Bagging Constrained Forecasts with Application to Forecasting Equity Premium

Eric Hillebrand* Tae-Hwy Lee† Marcelo C. Medeiros‡

August 2009

Abstract
The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We propose bootstrap aggregation (bagging) as a means of imposing parameter restrictions. In this context, bagging results in a soft threshold as opposed to the hard threshold that is implied by a simple restricted estimation. We show analytically that the resulting forecast has lower variance than the forecast that results from a simple restricted estimator. In an empirical application using the same data set as in Campbell and Thompson (2008), “Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?”, we show that the resulting forecasts have more predictive power than those resulting from simple parameter restrictions.

Keywords: bagging, equity premium, return prediction, restricted estimation, restricted forecasting

1 Introduction
Excess returns prediction has attracted academics and practitioners for many decades since the early 1920s, when Dow (1920) studied the role of dividend ratios as a possible predictor for returns. In the 1980s, a number of authors presented empirical evidence of ex-post (in-sample) return predictability. Fama and Schwert (1977), Fama and Schwert (1981), Rozeff (1984), Keim and Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,b) and Fama and French (1988, 1989) showed that excess returns could be successfully predicted based on lagged values of variables such as dividend-price ratio and dividend yield, earnings-price ratio and dividend-earnings ratio, interest rates and spreads, inflation rates, book-to-market ratio, volatility, investment-capital ratio, consumption, wealth, and income ratio, and aggregate net or equity issuing activity.

*Department of Economics, Louisiana State University, Baton Rouge, LA 70803, U.S.A. Phone +1 (225) 578-3795. E-mail: erhil@lsu.edu
†Department of Economics, University of California, Riverside, CA 92521-0427, U.S.A. Phone: +1 (951) 827-1509. E-mail: taelee@ucr.edu.
‡Department of Economics, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil Phone: +1 (951) 827-2325. E-mail: mcm@econ.puc-rio.br.
Subsequent work, however, demonstrated that these results do not hold during the bull market period of the 1990s; see Lettau and Ludvigson (2001) or Schwert (2002). For example, during this period when stock prices soared, the dividend yield systematically drifted downwards, thus generating negative sample correlation between returns and dividend yield, contrary to the positive historical correlation. Furthermore, since early results concerned only ex-post predictability, they were of little practical interest. Studies of ex-ante (out-of-sample) return predictability have found either that previous successful results were restricted to particular sub-samples (Pesaran and Timmermann 1995) or that return predictability was a statistical illusion; see Bossaerts and Hillion (1999). In addition, several authors pointed out that the apparent predictability of stock returns might be spurious as many of the predictor variables were highly persistent, leading to possibly biased coefficients and incorrect t-tests in predictive regressions; see, for example, Nelson and Kim (1993), Cavanagh, Elliot, and Stock (1995), and Stambaugh (1999). These problems are exacerbated when large numbers of variables are considered and only results that are apparently statistically significant are reported; see Foster, Smith, and R.E. Whaley (1997) and Ferson, Sarkissian, and Simin (2003).

The inconclusive evidence has inspired the use of time-varying regression models. As pointed out by Pesaran and Timmermann (2002) and Timmermann (2007) “forecasters of stock returns face a moving target that is constantly changing over time. Just when a forecaster may think that he has figured out how to predict returns, the dynamics of market prices will, in all likelihood, have moved on, possibly as a consequence of the forecaster’s own efforts.” On the other hand, alternative econometric methods were advocated for correcting the above mentioned bias and conducting valid inference; Cavanagh, Elliot, and Stock (1995), Mark (1995), Kilian (1999), Ang and Bekaert (2006), Jansson and Moreira (2006), Lewellen (2004), Torous, Valkanov, and Yan (2004), Campbell and Yogo (2006), and Polk, Thompson, and Vuolteenaho (2006).

More recently, Goyal and Welch (2008) argued that none of the conventional predictor variables proposed in the literature seems capable of systematically predicting stock returns out-of-sample. Their empirical evidence suggests that most models were unstable or spurious, and most models are no longer significant even in-sample. The authors show that the earlier apparent statistical significance was especially confined to the years of the Oil Shock of 1973–1975; see also Butler, Grullon, and Weston (2006).

Campbell and Thompson (2008), on the other hand, show that many predictive regressions outperform the historical average return once weak restrictions are imposed on the signs of coefficients and return forecasts. The out-of-sample explanatory advantage over the historical mean is small and usually statistically not significant, but nonetheless economically meaningful for mean-variance investors.

Our contribution is a new application of bagging as a means of imposing parameter restrictions. Bagging in this context results in a soft threshold as opposed to the hard threshold that is implied by a simple restricted estimation. We show
that the resulting forecast has lower variance than the forecast that results from a simple restricted estimator. In an empirical application using the same data set as in Campbell and Thompson (2008), we show that the resulting forecasts have more predictive power than those resulting from simple parameter restrictions.

The paper is organized as follows. Section 2 specifies the forecast equation, defines the estimators and forecasts and presents our bagging approach to restricted parameter estimation. Section 3 presents our main theoretical result of variance reduction compared to simple restricted estimation. Section 5 describes the data set. Section 6 presents the main empirical results. Section 7 concludes.

2 Forecasting with Parameter Restrictions

2.1 Forecast Equation, Estimators, and Forecasts

The forecast equation is a univariate regression

\[y_{t+1} = \alpha + \beta x_t + \varepsilon_t, \quad t = 1, \ldots, T - 1, \]

(1)

where \(y_t \) is the excess return, \(x_t \) is the predictor variable, and \(\varepsilon_t \) is the error term. Following Campbell and Thompson (2008), we will consider monthly and annualized returns. For the independent variable \(x_t \), we use the predictor list in Section 5.

To fix ideas, we define the following estimators of a parameter \(\theta \):

1. Unrestricted OLS estimator \(\hat{\theta} \), for example,
 \[\bar{\theta} = \hat{\alpha}, \text{ or } \bar{\theta} = \hat{\beta}. \]

2. Restricted estimator for \(\theta \) subject to a lower bound \(\theta_1 \leq \theta \):
 \[\tilde{\theta} := \max\{\hat{\theta}, \theta_1\}. \]

3. Gordon and Hall (2008) propose the estimator
 \[\tilde{\theta} := \frac{1}{B} \sum_{j=1}^{B} \max\{\tilde{\theta}^{*}(j), \theta_1\} = \frac{1}{B} \sum_{j=1}^{B} \bar{\theta}^{*}(j) = \hat{B}(\max\{\tilde{\theta}^{*}, \theta_1\}|\mathcal{X}) \]

(2)

for the situation where a lower bound \(\theta_1 \) is known. Here, \(\mathcal{X} \) is the available data set, \(\mathcal{X}^{*} \) is a bootstrap sample, and \(\tilde{\theta}^{*} \) is a bootstrap replication of \(\tilde{\theta} \) from \(\mathcal{X}^{*} \). There are \(B \) such bootstrap replications. Gordon and Hall (2008) show that subject to regularity conditions (see proof of Proposition 2), the asymptotic variance of \(\tilde{\theta} \) is smaller than that of \(\bar{\theta} \) if the population parameter \(\theta_0 \) coincides with the boundary \(\theta_1 \).

Based on these estimators, we define the following forecast schemes:

1. Historical mean forecast:
 \[\bar{y}_{t+1} := \frac{1}{t} \sum_{i=1}^{t} y_i. \]
2. **UF** (unrestricted forecast) using $\tilde{\theta}$:

$$\tilde{y}_{t+1} := \tilde{\alpha} + \tilde{\beta}x_t.$$

UF is used in Goyal and Welch (2008).

3. **PC** (forecast with positive coefficient restriction for β) using $\tilde{\theta}$:

$$\tilde{y}_{t+1} := \tilde{\alpha} + \tilde{\beta}x_t.$$

PC is used in Campbell and Thompson (2008).

4. **PC-GH** (forecast with positive coefficient restriction for β) using the Gordon and Hall (2008) estimator $\tilde{\theta}$:

$$\tilde{y}_{t+1} := \tilde{\alpha} + \tilde{\beta}x_t.$$

5. **PF** (forecast with positivity restriction):

$$y_{t+1}^{PF} := 1_{\{\tilde{y}_{t+1}>0\}}\tilde{y}_{t+1}.$$

6. **PCF** (forecast with joint positivity restriction and positive coefficient restriction)

$$y_{t+1}^{PCF} := 1_{\{\tilde{y}_{t+1}>0\}}\tilde{y}_{t+1}.$$

7. **PF-GH** (forecast with positivity restriction) using the Gordon and Hall (2008) estimator $\tilde{\theta}$:

$$y_{t+1}^{PF-GH} := 1_{\{y_{t+1}>0\}}\tilde{y}_{t+1}.$$

2.2 Bagging Scheme

The idea of bagging was introduced in Breiman (1996) and studied more rigorously in Bühlmann and Yu (2002). It has been shown in a number of studies that bagging can reduce the mean squared error of forecasts considerably by averaging over the randomness of variable selection (Inoue and Kilian 2008, Lee and Yang 2006). Applications include financial volatility (Huang and Lee 2007b, Hillebrand and Medeiros forthcoming), equity premia (Huang and Lee 2007a, Rapach, Strauss, and Zhou 2008), short-term interest rates (Audrino and Medeiros 2008), and employment data (Rapach and Strauss 2007).

We bootstrap-average over the forecast schemes in the next step of our proposal:

1. Compute the historical mean forecast \tilde{y}_{t+1} using all available observations on the excess return.

2. Run the unrestricted forecast regression (1) and compute the unrestricted forecast $\hat{\theta}$.

3. Apply a bootstrap scheme to obtain B bootstrap replications of the estimated unrestricted parameters $\hat{\alpha}^*$, $\hat{\beta}^*$ and the forecast \hat{y}_{t+1}^*.
4. For bootstrap replications \(\hat{\beta}^* \) of the estimated parameter that have the correct sign, store the forecast \(\hat{y}_{t+1}^* \). For those that do not have the correct sign, replace the forecast by the historical mean forecast \(\hat{y}_{t+1} \). (This is equivalent to computing the restricted forecast \(\hat{y}_{t+1}^* \).)

5. Compute the bagged restricted coefficient forecast \(\text{B-PC} \) as the mean over the \(B \) obtained forecasts \(\hat{y}_{t+1}^* \).

6. Analogously, compute the bagged forecast with positivity restriction \(\text{B-PF} \) by averaging over \(B \) bootstrap replications of \(y_{t+1}^{PF} \). Bootstrap replications of the forecast that are negative are replaced by zero, not by the historical mean.

7. Analogously, compute the forecast with positivity restriction and with sign restriction on the coefficient \(\text{B-PCF} \) by averaging over \(B \) bootstrap replications of \(y_{t+1}^{PCF} \). Forecasts that violate either restriction are replaced by zero.

We employ and compare five different bootstrap methods in the bootstrap aggregation scheme.

1. **I.I.D. Bootstrap:** In the simplest bootstrap scheme, we draw \(B \) bootstrap samples from the pairs \((y_{t+1}, x_t)\) with replacement and estimate equation (1) on each bootstrap sample.

2. **Moving Block Bootstrap:** We apply the moving block bootstrap (Künsch 1989, Politis and Romano 1994, Hall, Horowitz, and Jing 1995) with a block length of 12 months. Experimenting with different block sizes did not lead to substantially different results.

3. **Parametric Bootstrap:** For the parametric bootstrap, we estimate the forecast equation (1) and obtain the estimated error series \(\hat{\varepsilon}_t \). We then draw bootstrap samples \(\hat{\varepsilon}_t^* \) with replacement from this time series and compute the bootstrap sample \(y_{t+1}^* = \hat{\alpha} + \hat{\beta} x_t + \hat{\varepsilon}_t^* \).

4. **Wild Bootstrap:** We use a two-point wild bootstrap based on the divine proportion following Li and Wang (1998). The forecast equation (1) is estimated and the estimated error series \(\hat{\varepsilon}_t \) obtained. The bootstrap sample \(\hat{\varepsilon}_t^* \) is generated by setting

\[
\hat{\varepsilon}_t^* = \begin{cases}
\frac{1 - \sqrt{5}}{2} \hat{\varepsilon}_t \text{ with probability } \frac{\sqrt{5} + 1}{2\sqrt{5}}, \\
\frac{1 + \sqrt{5}}{2} \hat{\varepsilon}_t \text{ with probability } \frac{\sqrt{5} - 1}{2\sqrt{5}}.
\end{cases}
\]

The bootstrap sample \(y_{t+1}^* = \hat{\alpha} + \hat{\beta} x_t + \hat{\varepsilon}_t^* \) is then generated as in the parametric bootstrap.
2.3 Shrinkage

The sign restrictions on the coefficients of the predictors in equation (1) can be understood as a shrinkage procedure with critical value $c = 0$. We avoid the term pre-testing because in the return prediction problem the regressand has low persistence and the regressors have high persistence. This renders standard inference invalid (Jansson and Moreira 2006, Torous, Valkanov, and Yan 2004). We relax this somewhat restrictive critical value $c = 0$ and consider two additional critical values, $c = \sqrt{2}$ and $c = \sqrt{\log(T)}$. The choice of these critical values is motivated by the shrinkage representation of forecast regression models proposed in Stock and Watson (2005). $c = \sqrt{2}$ corresponds to selecting regressors according to AIC; $c = \sqrt{\log(T)}$ corresponds to selecting regressors according to BIC.

3 Main Results

The Gordon and Hall (2008) estimator is a bagging approach by construction. Both i.i.d. and moving block bootstrap methods can be used for this estimator. We show the applicability of their result to the coefficient of interest β and to the forecast $\mathbb{E}(y_{t+1} \mid x_t)$ in Proposition 2. In Proposition 3, we establish the equivalence of the PC-GH forecast \hat{y}_{t+1} with B-PC, which averages the positive coefficient forecast \hat{y}_{t+1}. By Proposition 3, the bagged positive coefficient forecast B-PC is more efficient than the forecast \hat{y}_{t+1} from simple restricted estimation.

Assumption 1 Consider Equation (1). Make the following assumptions on the error process and on the regressor series.

1. The ε_t have mean zero and variance $\sigma^2 = \text{Var}(\varepsilon_t) < \infty$.
2. The ε_t satisfy the Lyapunov-condition $\mathbb{E}|\varepsilon_t|^{2+\epsilon} \leq C$ for some $C, \epsilon > 0$.
3. The regressor time series has finite mean $\mathbb{E}x$ and variance $\text{Var}(x)$.

The third assumption is critical in the presence of highly persistent regressors. We assume that despite their slow mean-reversion, which possibly even includes long memory, the regressors are covariance-stationary. Under these assumptions, the following Proposition shows the applicability of the Gordon and Hall (2008) bagging estimator to the parameter β and to the forecast $\mathbb{E}(y_{t+1} \mid x_t)$.

Proposition 2 [Gordon and Hall (2008)]

Let $\hat{\theta}$ denote the least-squares estimator of θ. Let Z be a standard normal random variable with probability density function $\phi(z)$ and cumulative distribution function $\Phi(z)$. Consider the parameters $\theta = \beta$ and $\theta = \mathbb{E}(y_{T+1} \mid x_T)$ subject to the positivity restriction $\theta > \theta_1 = 0$. Let θ_0 denote the population parameter.

1. Case $\theta_0 > 0$. Then, the estimator $\hat{\theta}$ defined in Equation (2) follows $\hat{\theta} = \tilde{\theta} + O(T^{-1})$.

2. Case $\theta_0 = 0$. Then, $T^{1/2} \tau^{-1}(\hat{\theta} - \theta_0)$ converges in distribution to the random variable $Z \Phi(Z) + \phi(Z)$, where τ^2 is the variance of the estimator $\hat{\theta}$.

The case where the constraint $\theta \geq 0$ is binding is the interesting case in terms of variance reduction. The asymptotic distribution of the simple constrained estimator $\hat{\theta}$ is a standard normal truncated to the positive half-line and thus has variance $(1-1/\pi)/2 \approx 0.3408$. The distribution of $Z \Phi(Z) + \phi(Z)$ has variance $1/3 + \sqrt{3}/(2\pi) - 1/\pi \approx 0.2907$. Thus, in the binding case, $\hat{\theta}$ has about 15% less variance than θ.

Proposition 3 Bagging the positive coefficient forecast \tilde{y}_{t+1} (B-PC) is equivalent to computing the forecast \hat{y}_{t+1} from the Gordon and Hall (2008) estimator $\hat{\theta}$ (PC-GH).

Proposition 3 shows how and why bagging improves the positivity-restricted forecast \tilde{y}_{t+1}, since the variance reduction result from Proposition 2 carries over.

4 Simulation

In order to evaluate the performance of the GH and restricted estimators, we consider the simulation experiment described below.

1. For $T = 100, \ldots, 200$ do the following:

 (a) generate T observations of
 \[
 \begin{align*}
 \log(x_t) &= \gamma \log(x_{t-1}) + e_t, \quad e_t \sim \text{NID}(0, 0.04) \\
 y_t &= 0.01 + \beta x_t + u_t, \quad u_t \sim \text{NID}(0, 1), \text{ and } \mathbb{E}(u_t e_s) = 0, \forall t, s; \quad (3)
 \end{align*}
 \]

 (b) estimate β using the unrestricted, restricted, and the Gordon-Hall estimators. The Gordon-Hall estimator is computed over 200 bootstrap samples;

 (c) using each of the above estimators, compute the unrestricted, restricted, and Gordon-Hall forecasts of y_{T+1}.

2. Repeat the steps above over 1000 Monte Carlo replications.

We consider the following values for γ and β:

\[
\begin{align*}
\gamma &= 0, 0.3, 0.5, 0.8, 0.9 \\
\beta &= 2^0, 2^{-1}, 2^{-2}, 2^{-3}, 2^{-4}, 2^{-5}, 2^{-6}, 2^{-7}.
\end{align*}
\]

In this manner we consider different signal-to-noise ratios as well as distinct levels of persistence of the regressor.

In Tables 1 and 2 we report the mean and the standard deviation of 100 times the out-of-sample R^2 over the 1000 Monte Carlo replications.
Table 1: Simulation Results: Average

<table>
<thead>
<tr>
<th>γ</th>
<th>0</th>
<th>0.3</th>
<th>0.5</th>
<th>0.8</th>
<th>0.9</th>
<th>0</th>
<th>0.3</th>
<th>0.5</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>UF</td>
<td>3.4074</td>
<td>4.0077</td>
<td>4.6158</td>
<td>10.5224</td>
<td>20.2218</td>
<td>0.2147</td>
<td>0.4330</td>
<td>0.5870</td>
<td>2.3659</td>
<td>5.4493</td>
</tr>
<tr>
<td>PC</td>
<td>3.4220</td>
<td>4.0193</td>
<td>4.6252</td>
<td>10.5226</td>
<td>20.2229</td>
<td>0.3323</td>
<td>0.5602</td>
<td>0.6848</td>
<td>2.4097</td>
<td>5.4683</td>
</tr>
<tr>
<td>PC-GH</td>
<td>3.4634</td>
<td>4.0547</td>
<td>4.6515</td>
<td>10.5238</td>
<td>20.2232</td>
<td>0.4065</td>
<td>0.6525</td>
<td>0.7726</td>
<td>2.4859</td>
<td>5.5112</td>
</tr>
<tr>
<td>PF</td>
<td>3.4074</td>
<td>4.0085</td>
<td>4.6166</td>
<td>10.5225</td>
<td>20.2237</td>
<td>0.2252</td>
<td>0.4418</td>
<td>0.5989</td>
<td>2.3823</td>
<td>5.4880</td>
</tr>
<tr>
<td>PF-GH</td>
<td>3.3980</td>
<td>4.0048</td>
<td>4.6134</td>
<td>10.5157</td>
<td>20.2250</td>
<td>0.2476</td>
<td>0.4654</td>
<td>0.6177</td>
<td>2.4046</td>
<td>5.5163</td>
</tr>
</tbody>
</table>

The table shows the average of the out-of-sample R^2 over 1000 Monte Carlo replications.

Forecast types: UF unconstrained forecast, PC positive coefficient constraint, PF positive forecast constraint, PCF positive coefficient and positive forecast constraint.
Table 2: Simulation Results: Standard Deviation

<table>
<thead>
<tr>
<th>γ</th>
<th>0</th>
<th>0.3</th>
<th>0.5</th>
<th>0.8</th>
<th>0.9</th>
<th>0</th>
<th>0.3</th>
<th>0.5</th>
<th>0.8</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>β = 0.25</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>UF</td>
<td>1.7379</td>
<td>1.8637</td>
<td>1.8928</td>
<td>2.2622</td>
<td>3.1454</td>
<td>1.5994</td>
<td>1.6739</td>
<td>1.5128</td>
<td>1.6874</td>
<td>2.0767</td>
</tr>
<tr>
<td>PC</td>
<td>1.6296</td>
<td>1.7397</td>
<td>1.7910</td>
<td>2.2032</td>
<td>3.0739</td>
<td>1.3748</td>
<td>1.4612</td>
<td>1.3502</td>
<td>1.4493</td>
<td>1.9201</td>
</tr>
<tr>
<td>PC-GH</td>
<td>1.7441</td>
<td>1.8394</td>
<td>1.8872</td>
<td>2.3000</td>
<td>3.1286</td>
<td>1.4861</td>
<td>1.5714</td>
<td>1.4550</td>
<td>1.5919</td>
<td>2.0229</td>
</tr>
<tr>
<td>PF</td>
<td>1.6921</td>
<td>1.7795</td>
<td>1.8884</td>
<td>2.2031</td>
<td>3.1035</td>
<td>1.4158</td>
<td>1.5037</td>
<td>1.4493</td>
<td>1.5541</td>
<td>1.9649</td>
</tr>
<tr>
<td>PF-GH</td>
<td>1.6500</td>
<td>1.7271</td>
<td>1.8376</td>
<td>2.1611</td>
<td>3.0723</td>
<td>1.3956</td>
<td>1.4555</td>
<td>1.4127</td>
<td>1.5478</td>
<td>1.9307</td>
</tr>
<tr>
<td>β = 0.0625</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>UF</td>
<td>1.4750</td>
<td>1.5323</td>
<td>1.4650</td>
<td>1.7653</td>
<td>1.7951</td>
<td>1.4459</td>
<td>1.4785</td>
<td>1.5379</td>
<td>1.5660</td>
<td>1.6635</td>
</tr>
<tr>
<td>PC</td>
<td>1.1799</td>
<td>1.2438</td>
<td>1.2645</td>
<td>1.4735</td>
<td>1.4980</td>
<td>1.1471</td>
<td>1.1725</td>
<td>1.2172</td>
<td>1.3267</td>
<td>1.3810</td>
</tr>
<tr>
<td>PC-GH</td>
<td>1.3140</td>
<td>1.3513</td>
<td>1.3888</td>
<td>1.5835</td>
<td>1.6102</td>
<td>1.2445</td>
<td>1.2898</td>
<td>1.3250</td>
<td>1.4482</td>
<td>1.5182</td>
</tr>
<tr>
<td>PF</td>
<td>1.3229</td>
<td>1.4358</td>
<td>1.3654</td>
<td>1.5851</td>
<td>1.7020</td>
<td>1.3588</td>
<td>1.4536</td>
<td>1.5204</td>
<td>1.5110</td>
<td>1.5882</td>
</tr>
<tr>
<td>PF-GH</td>
<td>1.3664</td>
<td>1.4664</td>
<td>1.4243</td>
<td>1.6124</td>
<td>1.7273</td>
<td>1.4626</td>
<td>1.5413</td>
<td>1.6159</td>
<td>1.6075</td>
<td>1.6698</td>
</tr>
<tr>
<td>β = 0.0156</td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0</td>
<td>0.3</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>UF</td>
<td>1.4144</td>
<td>1.4831</td>
<td>1.5558</td>
<td>1.5425</td>
<td>1.7217</td>
<td>1.4329</td>
<td>1.3289</td>
<td>1.4960</td>
<td>1.5270</td>
<td>1.6153</td>
</tr>
<tr>
<td>PC</td>
<td>1.0549</td>
<td>1.0918</td>
<td>1.2872</td>
<td>1.2027</td>
<td>1.3063</td>
<td>1.0260</td>
<td>0.9907</td>
<td>1.1250</td>
<td>1.1632</td>
<td>1.2450</td>
</tr>
<tr>
<td>PC-GH</td>
<td>1.1782</td>
<td>1.1988</td>
<td>1.3918</td>
<td>1.3382</td>
<td>1.4514</td>
<td>1.1434</td>
<td>1.1161</td>
<td>1.2420</td>
<td>1.2890</td>
<td>1.3842</td>
</tr>
<tr>
<td>PF</td>
<td>1.4424</td>
<td>1.5259</td>
<td>1.4446</td>
<td>1.5014</td>
<td>1.6192</td>
<td>1.3741</td>
<td>1.3792</td>
<td>1.4464</td>
<td>1.4637</td>
<td>1.6280</td>
</tr>
<tr>
<td>PF-GH</td>
<td>1.5526</td>
<td>1.6580</td>
<td>1.5536</td>
<td>1.6431</td>
<td>1.7393</td>
<td>1.5037</td>
<td>1.5067</td>
<td>1.5756</td>
<td>1.5947</td>
<td>1.7722</td>
</tr>
</tbody>
</table>

The table shows the standard deviation of the out-of-sample R^2 over 1000 Monte Carlo replications.

Forecast types: UF unconstrained forecast, PC positive coefficient constraint, PF positive forecast constraint, PCF positive coefficient and positive forecast constraint.
5 Data

We use the data set of Campbell and Thompson (2008), which was kindly provided by Sam Thompson. The data frequency is monthly. Excess returns on the S&P 500 are calculated from the returns time series (1871M2 through 2005M12, CRSP since 1927) and the 3-month Treasury-Bill interest rate (1920M1 through 2005M12, 1870M2 through 1919M12 calculated following Goyal and Welch (2008)).

The predictor variables are the dividend yield \(d/p \) (1872M2 through 2005M12), earnings yield \(e/p \) (1872M2 through 2005M12), smoothed earnings yield \(se/p \) following Campbell and Shiller (1988b), Campbell and Shiller (1998) (1881M1 through 2005M12), book-to-market ratio \(b/m \) (1926M6 through 2005M12), smoothed return on equity \(roe \) as described in Campbell and Thompson (2008) (1936M6 through 2005M12), the 3-month Treasury-Bill \(tbl \) (1920M1 through 2005M12), long-term government bond yield \(lty \) (1870M1 through 2005M12), the term spread \(ts \), i.e. the difference between long-term and short-term treasury yields (1920M1 through 2005M12), the default spread \(ds \), i.e. the difference between corporate and Treasury bond yields (1919M1 through 2005M12), the lagged inflation rate \(inf \) (1871M5 through 2005M12), the equity share of new issues \(nei \) proposed by Baker and Wurgler (2000), and the consumption-wealth ratio \(cay \) proposed by Lettau and Ludvigson (2001). As sample and forecast periods we report the same as in Campbell and Thompson (2008). Additionally, we consider the sample period 1960M1 through 2005M12 with forecasts starting in 1980M1.

We apply sign restrictions on the coefficients \(\beta \) depending on the predictor, a positivity restriction on the forecast \(y_{t+1} \) of the risk premium, and the intersection of these two. The coefficient restrictions are listed for the different predictors in the table below.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sign (\beta)</th>
<th>Variable</th>
<th>Sign (\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d/p)</td>
<td>+</td>
<td>(lty)</td>
<td>-</td>
</tr>
<tr>
<td>(e/p)</td>
<td>+</td>
<td>(ts)</td>
<td>+</td>
</tr>
<tr>
<td>(se/p)</td>
<td>+</td>
<td>(ds)</td>
<td>+</td>
</tr>
<tr>
<td>(b/m)</td>
<td>+</td>
<td>(inf)</td>
<td>-</td>
</tr>
<tr>
<td>(roe)</td>
<td>+</td>
<td>(nei)</td>
<td>-</td>
</tr>
<tr>
<td>(tbl)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We follow Campbell and Thompson (2008) in the case of the consumption-wealth ratio \(cay \) and use consumption, assets, and income as three regressors with sign restriction \((+, -, -)\) instead of generating one fitted regressor as proposed in Lettau and Ludvigson (2001).

6 Empirical Results

The estimation results are not presented here for space. The results are directly related to Tables 1 in Goyal and Welch (2008) and Campbell and Thompson (2008).
The reported numbers are out-of-sample R^2 statistics R^2_{OS} multiplied by 100.

$$100R^2_{OS} = 100 \left(1 - \frac{\sum_{t=1}^{T}(y_t - \hat{y}_t)^2}{\sum_{t=1}^{T}(y_t - \bar{y}_t)^2}\right),$$

where \hat{y}_t is the fitted value from the predictive regression (1) estimated through $t - 1$ and \bar{y}_t is the historical average return estimated through period $t - 1$. When we use the same sample and forecast periods as Campbell and Thompson (2008), we follow them in starting the calculation of the average return at the beginning of the sample in 1871, irrespective of possibly later availability of the predictor variables.

The main findings that emerge from the tables are summarized in the following list.

1. For monthly returns and the sample and forecast periods considered in Campbell and Thompson (2008), for every single predictor variable there is a bagging procedure that results in improved forecast performance. As outlined in Campbell and Thompson (2008) Section 2, these differences are not statistically significant but nevertheless economically meaningful for a mean-variance investor.

2. For annual returns, the same statement holds with the single exception of the smoothed price/earnings ratio se/p.

3. In the case of the estimation sample starting in 1960M1 and forecasts beginning in 1980M1, for both monthly and annual returns and all predictor variables, there is a bagging procedure that improves the forecast performance. In most cases, however, here an improvement means that the out-of-sample R^2 is a smaller negative number, i.e. for the majority of predictor variables, the historical mean outperforms the forecast regression. Bagging only reduces this advantage of the historical mean.

4. We see a sharp decline in predictive power of the regressors as we move from the Campbell and Thompson (2008) estimation and forecast periods to the 1960M1/1980M1 period.

5. When we apply different critical values for the pre-test in the bagging procedure, on the Campbell and Thompson (2008) monthly sample, the BIC selection improves the forecast for 7 of 11 regressors. On the Campbell and Thompson (2008) annual sample, the AIC selection improves the forecast for 2 regressors and BIC selection improves the forecast for 2 regressors.

6. On the 1960M1/1980M1 monthly sample, BIC selection improves the forecast for 8 of 11 regressors. On the 1960M1/1980M1 annual sample, BIC selection improves the forecast for 6 regressors and AIC selection improves the forecast for 1 regressor. These are again for the most part reductions of the disadvantage compared to the mean forecast.
7. Comparing the different bagging techniques, on the Campbell and Thompson (2008) monthly sample, the Gordon and Hall (2008) method works best for 8 of 11 regressors. The wild bootstrap works best for 2 regressors. On the Campbell and Thompson (2008) annual sample, the picture is scattered: Gordon and Hall (2008) is best for only 1 regressor, the wild bootstrap is best for 4 regressors, the i.i.d. bootstrap is best for 3 regressors.

8. On the 1960M1/1980M1 sample, for both monthly and annual returns, the i.i.d. bootstrap performs best.

7 Conclusion

In this paper, we propose a new application of bagging as a means of imposing parameter restrictions. Bagging imposes a soft threshold at the boundary as opposed to the hard threshold that corresponds to simple restricted estimation. We show that the resulting forecast has lower variance than the forecast that results from a simple restricted estimator. The main result of variance reduction is the consequence of a result from Gordon and Hall (2008). In Proposition 2, we show the applicability of their estimator to the return prediction problem. In Proposition 3, we show that bagging forecasts from simple restricted estimations is equivalent to applying the Gordon and Hall (2008) estimator. In an empirical application using the same data set as in Campbell and Thompson (2008), we show that the resulting forecasts have more predictive power than those resulting from simple parameter restrictions.

REFERENCES

