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SUMMARY

Can the vague meanings of probability terms such as doubtful, probable, or likely be
expressed as membership functions over the [0, 1] probability interval? A function for a
given term would assign a membership value of /ero to probabilities not at all in the
vague concept represented by the term, a membership value of one to probabilities defi-
nitely in the concept, and intermediate membership values to probabilities represented
by the term to some degree. A modified pair-comparison procedure was used in two
experiments to empirically establish and assess membership functions for several proba-
bility terms. Subjects performed two tasks in both experiments: They judged (a) to what
degree one probability rather than another was better described by a given probability
term, and (b) to what degree one term rather than another better described a specified
probability. Probabilities were displayed as relative areas on spinners. Task a data were
analyzed from the perspective of conjoint-measurement theory, and membership func-
tion values were obtained for each term according to various scaling models. The con-
joint-measurement axioms were well satisfied and goodness-of-fit measures for the scal-
ing procedures were high. Individual differences were large but stable. Furthermore, the
derived membership function values satisfactorily predicted the judgments indepen-
dently obtained in task b. The results support the claim that the scaled values represented
the vague meanings of the terms to the individual subjects in the present experimental
context. Methodological implications are discussed, as are substantive issues raised by
the data regarding the vague meanings of probability terms.

Most people, including expert forecasters, generally prefer
communicating their uncertain opinions with nonnumerical
terms such as doubtful, probable, slight chance, very likely, and
so forth, rather than with numerical probabilities. On anecdotal
grounds, the imprecision of nonnumerical terms is preferred to
the precision of probability numbers for at least two reasons:
First, opinions are generally not precise and therefore, the claim
goes, it would be misleading to represent them precisely. For
example, commenting that numbers denote authority and a
precise understanding of relations, a committee of the U.S. Na-
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tional Research Council wrote with regard to formal risk assess-
ments that there is an

important responsibility not to use numbers, which convey the im-
pression of precision, when the understanding of relationships is
indeed less secure. Thus, while quantitative risk assessment facili-
tates comparison, such comparison may be illusory or misleading
if the use of precise numbers is unjustified. (National Research
Council Governing Board Committee on the Assessment of Risk,
1981, p. 15)

The second reason frequently suggested for communicating
with nonnumerical terms rather than with probability numbers
is that most people feel they better understand words than num-
bers. Zimmer (1983) pointed out that it was not until the 17th
century that probability concepts were formally developed, yet
expressions for different degrees of uncertainty existed in many
languages long before then. He suggested that people generally
handle uncertainty by means of verbal expressions and their
associated rules of conversation, rather than by means of num-
bers.

The dual claims that vague opinions are well communicated
with probability expressions and that people more naturally
think about uncertainty in a verbal than in a numerical manner,
can be investigated only after methods have been developed for
validly measuring the vague meanings of probability terms.
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Recognizing that the meanings of words are subject to individ-
ual differences and numerous context factors, the research pre-
sented in this article is primarily methodological, aimed at de-
veloping suitable measurement techniques and at making pre-
liminary statements about probability terms. If procedures for
validly measuring vague meanings can be established, they can
be used to investigate the many substantive issues.

In most of the empirical work to date on the meaning of prob-
ability words, subjects have been asked to give numerical equiv-
alents to various probability phrases. The overwhelming result
has been that there is great intersubject variability in the numer-
ical values assigned to probability terms and great overlap
among terms (Bass, Cascio, & O'Connor, 1974; Beyth-Marom,
1982; Budescu & Wallsten, 1985; Foley, 1959; Johnson, 1973;
Lichtenstein & Newman, 1967; Simpson, 1944,1963). Within-
subject variability in the assignment of numbers to probabilistic
terms is not minor, but is considerably less than between-sub-
jects variability (Beyth-Marom, 1982; Budescu & Wallsten,
1985; Johnson, 1973). However, neither the within- nor the be-
tween-subjects variability alone can be taken as evidence that
probability terms have vague meanings. First of all, as pointed
out by Budescu and Wallsten (1985), there is no way to deter-
mine whether the variability is due to differences between sub-
jects, or within subjects over time, in the use of numbers rather
than in the use of words. Second, and more to the present point,
as Rubin (1979) noted in a related context, these data can be
interpreted either as showing that the meanings of probability
terms are not constant over people or times or that the expres-
sions have generally vague meanings. An alternative approach
is therefore necessary.

Membership Functions

Several people (e.g., Watson, Weiss, & Donnell, 1979; Zadeh,
1975; Zimmer, 1983) have suggested that the meaning of a
probability term can be represented by a function on the [0, 1]
probability interval, as illustrated in Figure 1. The function
takes its minimum value, generally zero, for probabilities that
are not at all in the concept represented by the phrase. It takes
its maximum value, which is generally one, for probabilities
definitely in the concept, and intermediate values for probabili-
ties with intermediate degrees of memberships in the concept
represented by the term. There are no constraints on the shapes
such functions can have, nor must they be expressable by
equations of any particular sort. Within fuzzy set theory, such
a function is called a membership function, but it is not neces-
sary to tie this idea strictly to fuzzy set theory.

Of course, the question of defining and measuring the vague
meaning of a term arises in a vast array of semantic domains,
and the concept of a membership function has been applied
quite broadly within fuzzy set theory (e.g., Norwich & Turksen,
1984; Zadeh, 1975; Zysno, 1981). As a general definition, a
membership function is a rule that assigns to each element in
the universe of discourse a number in the closed [0, 1] interval
indicating the degree to which that element is a member of a
particular set or category. If the category is well defined (e.g.,
male humans beyond their 60th birthday), then all membership
functions are either 0 or 1. If the category is not well defined
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Figure 1. Hypothetical membership functions
for two probability terms.

(e.g., middle-aged men), then the membership functions can
take on any value in the [0,1 ] interval.

Measurement of Vague Meanings

A considerable literature exists on the topic of vagueness (e.g.,
Ballmer & Pinkal, 1983; Gaines & Kohout, 1977; Goguen,
1969; Hempel, 1939; Hersh & Caramazza, 1976; Labov, 1973;
Oden, 1981; Skala, Termini, & Trillas, 1984; Zadeh, 1965).
However, although much has been written about the measure-
ment of vagueness or fuzziness, empirical work has been rela-
tively sparse. One method relies on choice probabilities. For ex-
ample, a stimulus, such as a square, is presented along with a
word such as small (Hersh & Caramazza, 1976; Hersh, Cara-
mazza, & Brownell, 1979). The subject answers yes or no ac-
cording to whether the word describes the stimulus. The frac-
tion of yes responses over subjects or within subjects over trials
is then taken as the degree of membership for that stimulus in
the vague concept represented by the word. Rubin (1979) has
criticized this procedure because (a) it confounds measures of
fuzziness with response variability that is due to experimental
procedures, and (b) it can just as well be interpreted as showing
that words have different meanings to different people or at
different times as that words have vague or fuzzy meanings.

A second method of obtaining membership functions is di-
rect scaling, in which subjects rate stimuli on a scale from defi-
nitely in the concept to definitely not in the concept. For exam-
ple, Oden (1977b) had subjects rate propositions on a scale from
absolutely true to absolutely false. Similarly, Zysno (1981) had
subjects rate grade of membership on a scale from 0% to 100%
of a man X years of age in concepts such as old man, very young
man, and so forth, for various values of X (see also MacVicar-
Whelan, 1978). In other studies (e.g., Kuz'Min, 1981), subjects
picked stimuli with specified grades of membership. The direct-
scaling methods overcome some of the problems with the choice
probabilities, in that the construct of vagueness is directly as-
sessed in individual responses. However, as with all magnitude
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Figure 2. Sample experimental scenario.

estimation procedures, the responses cannot be evaluated un-
less they are embedded within a theory. Oden used functional
measurement techniques to assess his measures; many other
authors simply have displayed the estimates after they are ob-
tained (e.g., Norwich & Turksen, 1984) or have fitted them with
explicit functions that are evaluated by means of goodness-of-
fit measures (e.g., Zysno, 1981).

We use a different approach, which utilizes a modified pair-
comparison method for measuring the vague meanings of prob-
ability terms. Empirically, the procedure is similar to one
utilized by Oden (1977a), but the data are analyzed much
differently. The data can first be checked at an ordinal level to
determine if they satisfy certain axioms necessary for scaling
vagueness according to an algebraic difference (or ratio) model
(Krantz, Luce, Suppes, & Tversky, 1971). If the axioms are rea-
sonably well satisfied, then specific difference- or ratio-scaling
procedures (Saaty, 1977,1980;Torgerson, 1958) can be applied
to the data for the purpose of deriving the vagueness measure,
or membership function, for each expression. Furthermore,
goodness-of-fit measures can be calculated to evaluate the qual-
ity of the metric scaling.

A Pair-Comparison Method

Consider a sample experimental trial as shown in Figure 2.
Two spinners are drawn on a computer monitor. Subjects are
told to imagine a pointer over each spinner that can be spun so
that it randomly lands over either the white or the dark sector.
Thus, each spinner displays a different probability of the
pointer landing on white. There is a probability term printed
above the spinners and a line with an arrow on it below them.
The subject must move the arrow on the line to indicate for
which spinner the probability of landing on white is better de-
scribed by the probability term and how much better it is de-
scribed. Moving the arrow to the far left indicates that the left
spinner is absolutely better described, leaving the arrow in the
middle indicates that the two spinners are equally well de-
scribed, and so forth. The probabilities on the two spinners are
changed from trial to trial according to a left side by right side,

P X P, factorial design in which P = {#,. . . , pn}, where for
»'=!,. . . , n, the Pi denotes specific probabilities of the spin-
ners landing on white.

Consider the bounded response line shown in Figure 2 to ex-
tend from 1 on the left to 0 on the right and let £w(y) be the
response when probability pt is on the left, PJ is on the right,
and expression Wis displayed above them. The responses J?w(z/)
induce an ordering on the factorial design according to the de-
gree that the left hand probability is better described by the
term than is the right hand probability. If, as will be described,
this ordering satisfies the axioms of an algebraic difference
structure (Krantz, et al., 1971), then a suitable transformation
of the cell entries can be used in a difference or a ratio scaling
model to establish a membership function for the term W, such
as is shown in Figure 1.

A bit of notation will aid in making these concepts clear. Let
ptPj refer to a cell in the P X P factorial design, or in other words,
be an element in the Cartesian product o f P X P . The cells of
the factorial design are rank ordered according to how much
better phrase W describes the left-hand probability than the
right-hand probability. The rank ordering between any pair of
cells is denoted by £w where the subscript indicates that the
ordering is for the particular phrase (doubtful in Figure 2).
Stated formally,

(1)

Let (P X P, >w) refer to an ordered matrix of the sort just
described. Krantz et al. (1971) proved that if (P X P, >w) satisfy
five axioms, then there exists a mapping /iw from P into the real
numbers such that

iff Mw (Pi) ~ MW

or, equivalently, such that

iff

• Mw (Ac) - Mw(A),

(2)

(3)

In other words, scale values can be assigned to these probabili-
ties such that the rank order of differences (or of ratios) in the
assigned values matches the rank order of differences (or of ra-
tios) in the degrees to which the left-hand and right-hand proba-
bilities are described by the phrase. The scale values are unique
up to a linear (for the difference representation) or a power (for
the ratio representation) transformation. These scale values,
normalized to be nonnegative with an arbitrary maximum of
1, and plotted as a function of the probabilities (as illustrated
in Figure 1 ) can be taken as the membership function represent-
ing the degree to which each probability belongs to the vague
concept defined by the expression.

It should be noted that at an axiomatic level, the difference
and ratio representations cannot be distinguished unless
different orderings appear under difference- and ratio-inducing
conditions (see Birnbaum, 1980, and Miyamoto, 1983). This is
because any set of differences can be mapped into a set of ratios
by taking logs, and conversely, any set of ratios can be mapped
into a set of differences by exponentiating.
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Figure3. Illustration of the weak monotonicity axiom.

Tests of the Axioms

The five axioms specified by Krantz et al. (1971) include two
that are of purely mathematical interest and three that can be
subjected to empirical test. One of these, the weak order axiom,
states that all the elements o f P X P can be compared to each
other and that the ordering is transitive. Our method of using
the arrow location to rank order the matrix forces this axiom to
be satisfied, and therefore it is not of empirical interest here.
However, the remaining two axioms, sign reversal and weak mo-
notonicity, can be evaluated.

The weak monotonicity axiom is illustrated in Figure 3. It
states that for all Pi, Pj, P*,Pi',Pj',PX, e P, ifptPj ^w PtPt and
PiPk ^wPj'Pk', thenpipk 2>wPi'Pk'- Single arrows in Figure 3 indi-
cate the antecedent conditions and the double arrow indicates
the consequent.

The monotonicity axiom can be evaluated separately within
the P X P matrix associated with each term. This is done by
selecting suitable subsets of six cells within the matrix and then
for all those subsets for which the antecedent conditions are
met, checking to determine whether the consequent condition
is also met. The number of subsets available for test depends on
the size of the matrix and can be substantial. Of course, there is
considerable overlap among the subsets, and therefore the tests
are not independent. A convenient summary statistic for each
matrix is the percentage of possible tests that are satisfied.

The sign reversal axiom states that for all p\, #, A, Pi«P, if
PiPi >w PkA» then p^ >w PjPi- The axiom is checked easily on
all suitable quadruples of cells.

Norwich and Turksen (1982, 1984) were apparently the first
to recognize the close relation between the axiomatic formula-
tion of the algebraic difference structure and the validation of
membership functions. They provide an elegant mathematical
development of the measurement system just outlined.

It is important to note that a pure pair-comparison proce-
dure will yield ordinal data sufficient for checking the axioms
and also for nonmetric scaling, but will not provide data from
which membership functions can be derived by means of metric

scaling procedures. The present modified or any other graded
pair-comparison method (Sjoberg, 1980) does yield data that
can be analyzed in terms of both axiomatic and metric models.

Scaling Models

One approach to applying a metric difference model is to as-
sume that for a given expression W and probability pair p&j,
the subject places the arrow on the response line such that the
difference in the distances of the arrow from the two ends is
inversely proportional to the difference in the degrees to which
^describes p\ and PJ. Thus, the response R can be converted
to a difference score D = 2R — 1. Least squares estimates of
Mw (Pi) are then obtained by taking row means of the full P X
P matrix of difference scores for phrase W. The mathematical
details underlying this procedure are given in Appendix A.

Similarly, for the ratio-scaling models, it can be assumed that
the arrow is placed on the response line such that the ratio of
the distances of the arrow from the two ends is inversely propor-
tional to the ratio of the degrees to which fFdescribes # and PJ .
Thus, the response R can be converted to a ratio score S = R/
(1 — R). One ratio-scaling model then involves taking row geo-
metric means of the full PX P matrix of ratio scores to obtain
log least squares estimates of MW(A)> assuming the matrix is re-
ciprocal. Three other ratio-scaling models, anticipated by Gul-
liksen (1959), also require a reciprocal matrix, and yield scale
values by means of an eigenvalue-eigenvector decomposition.
The models differ in terms of whether the scale values are taken
as the normalized right eigenvector (Saaty, 1977, 1980), nor-
malized left eigenvector (Johnson, Seine, & Wang, 1979), or the
geometric mean of the two eigenvectors (Budescu, 1984). The
mathematical details are given in Appendix A.

The difference and four ratio-scaling models can be applied
to the P X P matrix associated with each phrase W. A goodness-
of-fit measure that allows all five models to be evaluated and
compared is the linear correlation between the observed and
the predicted responses. Note that because the scalings are done
independently for the P X P matrix associated with each W,
membership values across phrases are not comparable without
specific assumptions.

Cross Validation

It is necessary for the validity of any of these scaling models
that the axioms be satisfied within limits of error and that the
model's goodness-of-fit measure be high. However, such tests
are not sufficient for supporting the more interesting claim that
the vague meanings of the expressions are validly represented
by the derived scale values. For example, this claim would ap-
pear unjustified if the scale values plotted as a function of the
probabilities (cf. Figure 1) yielded uninterpretable curves, for
example, multipeaked curves. Furthermore, for this claim to be
justified, it is necessary that the derived values correctly predict
an independent set of judgments based on the presumed vague-
ness of the terms.

In the present experiments, subjects were also tested on trials
that were the converse of that shown in Figure 2: namely, there
was one spinner at the top of the screen with two terms below
it, one on the left and one on the right. The subject moved the
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arrow on the response line to indicate how much better one
term rather than the other described the displayed probability
of landing on white. Scale values derived from the previous
judgments should predict certain properties of these responses.

Three properties are derived in Appendix B. They are pre-
sented in terms of the scale values obtained by taking row geo-
metric means of ratio scores, because ultimately those were the
values with which they were tested. One prediction applies
when a fixed pair of phrases W\ and W$ is considered with vari-
ous probabilities p. In this case, converting the responses R to
ratio scores 5 = R/(\ - R) yields a measure that should be a
linear function of the ratio of the previously derived member-
ship functions, given certain reasonable assumptions about the
scaling parameters. This prediction is tested in Experiment 1.
Similarly, given slightly stronger assumptions about the param-
eters, when a fixed probability p is considered with various
phrases W\, W2,. . . , Wm, the ratio scores S should be lin-
early related to the ratio of the membership functions. This pre-
diction is tested in Experiment 2.

The third prediction derived in Appendix B applies when for
a given p there is a left side by right side, TXT factorial design,
in which Tisa vector of probability phrases. When this matrix
is scaled in the same manner as is the P X P matrix for a given
phrase W, scale values MP (W) are obtained. If nf (W) and the
previously discussed juw (p) both represent the same vagueness
construct, then they should be related by a power function. This
prediction is also tested in Experiment 2.

Although the various empirical evaluations could be carried
on in many domains, the present experiments do so for the
vague concepts defined by probability expressions. Specifically,
the purposes of the present experiments are (a) to evaluate the
measurement models by testing their ordinal and goodness-of-
fit predictions, (b) to evaluate the claim that the derived values
represent the vague meanings of the phrases both by consider-
ing the reasonableness of the resulting scales and by predicting
an independent set of judgments, and (c) to make some prelimi-
nary statements about meanings of nonnumerical probability
expressions.

Experiment 1

Experiment 1 was designed to test the feasibility of the modi-
fied method of pair comparison and to evaluate its results ac-
cording to the three aforementioned criteria.

We considered the experimental task to be a difficult one and
therefore made a number of decisions intended to maximize the
quality of the data. First, we elected to use social science and
business graduate students rather than undergraduates as sub-
jects. We assumed that they would represent a population of
people who think seriously about communicating degrees of
uncertainty, and who generally do so with nonnumerical
phrases.

Second, the probabilities used with each term were deter-
mined uniquely for each subject. Furthermore, each probabil-
ity pair was presented only once with a given term in a session.
Thus, if probability p\ was presented on the left and PJ on the
right, the arrow location, /?w ((/), expressed as a number from
1 to 0, was entered in cell ij and its complement, 1 - RW (ij),
was entered in cellji. Although this procedure has some draw-

backs, it greatly reduced the number of trials and the motiva-
tion for subjects to hurry through the session. Of particular in-
terest to this study, the procedure forced the sign reversal axiom
to be correct, and also yielded the reciprocal matrix required
by Saaty's ratio-scaling technique (see Appendix A).

Method

Subjects. In Experiment 1,20 subjects were recruited by placing no-
tices in graduate student mailboxes in the business school and in the
departments of anthropology, economics, history, psychology, and soci-
ology. The general nature of the study was described and subjects were
promised $25 for three sessions of approximately an hour and a half
each.

Probability phrases. Session 1 was for practice, and Sessions 2 and 3
were for data. During Session 1, all subjects judged chance, very likely,
and slight chance. Ten probability phrases covering the 0-1 range were
selected for presentation during Sessions 2 and 3. All subjects judged
doubtful, tossup, and likely during Session 2, improbable and good
chance in Session 3, and possible in both sessions.

In addition to these six core phrases, half of the subjects also judged
almost certain in Session 2 and probable in Session 3, whereas the other
half judged almost impossible and unlikely, respectively. The goal of
this particular choice was to allow examination of possible effects of list
composition on the subjects'judgments.

General procedure. The practice and two data sessions were sched-
uled generally two days apart. The experiment was controlled by an
IBM PC with stimuli presented on a color monitor and responses made
on the keyboard. During Sessions 2 and 3, subjects judged the terms
listed above. An index card was continuously in view listing all the ex-
pressions that the subject would encounter during the course of the ex-
periment.

Each session consisted of three parts. The purpose of Part 1 was to
determine the maximum, p', and the minimum, p«, probability for
which the subject would judge a given term to be appropriate. The re-
sults of this part were then used to determine the unique probabilities
to be used in Parts 2 and 3 for each subject.

The second part of the session involved the presentation of probabil-
ity terms with pairs of spinners, as already discussed. Part 3 reversed the
procedure, as also already discussed. Each part will now be described in
more detail.

Part 1. The instructions for this segment read in part:

In a specific context that we will describe shortly, we are interested
in the range of uncertainties for which you think it appropriate to
use each of various words or phrases that will be displayed on the
screen. . .

The context that we will provide is that of spinning a pointer on
a spinner that is radially divided into a red sector and a white sector.
The relative areas of each sector are clear to you and you must
convey that information to a friend. You want to tell him how likely
it is that the pointer will land on white if it is fairly spun and ran-
domly stops at some position. However, you are not allowed to tell
the person the actual probability of landing on white. Rather, you
are forced to use a nonnumerical descriptive phrase . . . We want
to know the range of probabilities in this specific spinner context
for which you would consider (each term) to be appropriate. . .

The terms scheduled for a given session were presented in random
order. On each trial a phrase was written at the top of the screen and a
spinner divided vertically into equal areas of red and white was drawn
below it. The subject then increased the proportion of white by pressing
the 7 key and decreased it by pressing the D key. The relative area of
white first was adjusted to indicate the lowest probability for which the
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subject would conceivably use the displayed term. This value was then
registered by pressing the L key.

After the lower limit was indicated, the subject then adjusted the spin-
ner to display the highest probability for which he or she might use the
term, which was registered by pressing the U key. The upper limit could
not be set below the lower limit.

Instructions for this part ended with three reminders: (a) to consider
the use of the expression only in terms of describing the chances of
the pointer landing on white for the particular spinner displayed on the
screen, not how it might be used in other contexts; (b) not to decide
whether the particular term is the best of all possible terms for a given
probability, but only whether it conceivably could apply to the displayed
relative area; and (c) to select the lowest and highest probabilities care-
fully, because they were to be used to determine the range of probabili-
ties used with each expression in the subsequent parts of the experi-
ment.

Immediately following Part 1, the interval from p. to p' for each term
was divided online into n equally spaced probability values for use in
Part 2. For each term, n was set at the largest integer between 0 and 8,
inclusive, such that the spacing of adjacent probability values was not
less than 0.02.

Part 2. Depending on the Part 1 results, the number of probabilities,
n, associated with each term ranged from 0 to 8. Terms were presented
in this part only if « a 2. Probabilities were displayed as the relative
areas of white on a spinner. Each phrase was presented once with each
of the n(n - l)/2 pairs of spinners. Phrases and spinner pairs were pre-
sented in a random order.

A single trial appeared as shown in Figure 2. The subject moved the
arrow on the line to indicate for which spinner the probability of landing
on white was better described by the expression and how much better it
was described.

The instructions said in part:

If you had to assign the phrase at the top of the screen to one of the
two spinners, to describe the probability of landing on white, to
which spinner is it more appropriately assigned and how much
more appropriate is the assignment of the phrase to that spinner
than to the other one?. . . If you believe the two probabilities are
equally well described by the phrase, leave the arrow in the middle.
If the probability on one spinner is better described by (the term)
than is the other, move the arrow closer to that spinner. The greater
the relative appropriateness of the phrase for one probability than
for the other, the closer the arrow should be moved to the corre-
sponding spinner. In other words, place the arrow so that its relative
distance between the two spinners represents its relative appropri-
ateness for the two probabilities.

The < and > keys on the keyboard were used to move the arrow,
which could be positioned at any of 17 equally spaced locations on the
line, consistent with response procedures normally used for Saaty's
(1977, 1980) ratio-scaling techniques. The R key was used to register
the response when the arrow was suitably placed.

Part 3. This was the converse of Part 2. A pair of terms was presented
only if the Part 1 estimates for the two terms overlapped. During Session
2, pairs were selected only from terms that were used in Parts 1 and 2
of that session. Pairs were selected the same way in Session 3, but in
addition, pairs were formed with one member from Session 2 and one
from Session 3 if their Part 2 estimates overlapped sufficiently. The
number of probabilities presented with a pair ranged from 1 to 8, with
adjacent probabilities differing by at least 0.02. Because of a program-
ming error, the Session 2 and 3 presentations of possible were treated
separately. Thus, in Session 3, possible may have been paired with other
phrases up to 16 times each. Spinner and phrase pairs were presented
in a random order.

On a trial, a spinner representing a particular probability was pre-
sented at the top of the screen; two terms were written below it, and a

marked line segment with a centered arrow was below them. In the same
manner as in Part 2, the subject moved the arrow on the line segment
to indicate which of the two terms better described the probability of
the spinner landing on white and how much better the description was.

The instructions read in part:

If you had to select one of the two phrases to describe the displayed
probability of landing on white, which of the two is better, and
relatively how much better is it? ... The relative distance you
place the arrow between the two phrases should represent relatively
how much better one phrase is for the displayed probability than is
the other.

Results

No apparent differences emerged between the two lists of
words, so this distinction will be disregarded. Data will be pre-
sented separately for the three parts of the experiment.

Part 1. Each subject set upper and lower limits for the range
of probabilities that could be associated with each expression.
A summary over subjects of these estimates is shown in Figure
4. For each term, the lower left-hand bar shows the interquartile
range of the lower limit determinations. Similarly, the lower
right-hand bar indicates the 25th and 75th percentiles of the
upper limit determinations. The medians of the lower and the
upper limit determinations are connected by the top bar for
each term. Note (a) the considerable variability over subjects,
(b) that even the word tossup has a range of meanings from
about 0.4 to 0.6 for most subjects, and (c) the enormous differ-
ences over subjects in the upper limit of values suitable for the
VKX& possible.

Despite the considerable between-subject variability in the
upper limits for possible, individual subjects were reasonably
stable over sessions. The correlation between the first and sec-
ond determinations of the lower limit for possible was 0.94
(p < 0.0001), and for the upper limit, it was 0.69 (p < 0.001).

Pan 2. Data from this task were analyzed at the individual
level. Each of 20 subjects set upper and lower limits for nine
expressions (counting possible separately for Sessions 2 and 3),
for a total of 180 determinations. The width of each interval
determined the number of probabilities to be associated with
the corresponding term in this part. At most, eight probabilities
were selected to be equally spaced within the interval such that
adjacent values differed by at least 0.02. In fact, on 144 occa-
sions (80%), eight probability values were associated with terms
in Part 2, on 14 occasions (7.8%), six or seven probabilities were
associated with terms, and on 14 occasions (7.8%), the number
of probability values used for each terms was three, four, or five.
On 8 of the 180 determinations (4.4%), the upper and lower
probability limits coincided, and therefore, that term never ap-
peared in Parts 2 or 3.

Considering the ordinal data properties first, judgments were
collected in this experiment in a manner such that both the
weak ordering and the sign reversal axioms were forced to be
satisfied. However, the weak monotonicity axiom could be
tested.

Evaluation of the axiom required a matrix of size n > 4. Be-
cause only one of each reciprocal pair of cells in the P X P ma-
trix for a phrase was responded to, the number of subsets of six
cells for which the axiom could be tested equaled (3)2 - ("). A
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Figure 4. First, second, and third quartiles over subjects of the upper and
lower probability limits for each phrase in Experiment 1.

10

satisfaction index, denned as the percentage of subsets satisfying
the consequent condition that also satisfied the antecedent con-
ditions, was determined for each phrase for which n s 4 for
each subject.

The results of the weak monotonicity test are summarized in
Table 1, as a function of matrix size. The table shows the three
quartiles of the empirical distributions of the satisfaction indi-
ces. Because the distribution of this statistic is not known, 400
random matrices were generated for each matrix size encoun-
tered in our experiment, and the mean and variance of these
null distributions were calculated. The last row in the table
shows the percentage of matrices at each size that had satisfac-
tion indices exceeding the mean value for random data by at
least three standard deviations. It seems reasonable to conclude
that weak monotonicity was well satisfied.

We now turn to the metric scaling. For this analysis the 17
equally spaced response locations were assigned values from left
to right of 1, 0.9375 ..... 0.0625, 0. Because subjects re-
sponded to only one member of each pair of reciprocal cells in
a matrix, the complementary response was computed. That is,

was the response to p&j for phrase W, /?w(/0 = 1 -
•RwOJ ) was entered in cell Pjpi .

Each matrix was scaled according to the models in Appendix
A. Scale values from the difference models were obtained
through application of Equations Al and A3. In order to trans-
form responses by Equation A4 for ratio scaling, responses,
Rw(ij), of 0 and 1 were first set equal to 0.0156 and 0.9844,
respectively (i.e., one fourth of the distance between the most
extreme and the immediately adjacent responses), to avoid divi-
sion by 0. Then the geometric-mean ratio scaling was accom-
plished via Equation A6. Ratio-scaling solutions were also ob-

tained by a right eigenvector-eigenvalue decomposition, a left
eigenvector-eigenvalue decomposition, and by taking the geo-
metric mean of the two eigenvectors.

The mean linear correlations between observed and pre-
dicted responses over all subjects and phrases were .75, .77, .75,
.75, and .76 for the difference, geometric mean, right eigenvec-
tor, left eigenvector, and mean eigenvector models, respectively.
Thus, all the models scaled the data about equally well, with a
slight superiority for the geometric-mean model. Detailed re-
sults will be presented only for the geometric-mean model; the
others show similar patterns.

Recall that on eight occasions, the upper and lower probabil-
ity limits from Part 1 coincided so that the phrases did not ap-

Table 1
Summary of Satisfaction Indexes for Weak
Monotonicity in Experiment 1

Index

Number of matrices
25th percentile
50th percentile
75th percentile
% for which z> 3.0"

4 or 5

9
80
87
92
0

Matrix size

6 or?

14
77
83
91

100

8

144
75
82
89
91

Total

167
75
82
89
87

Note. The satisfaction index is the percentage of submatrices for which
the antecedent conditions are met that also satisfy the consequent condi-
tion.
* This figure is based on simulated data.
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Table 2
Summary of Linear Correlations Between Observed and
Predicted Responses for the Geometric-Mean
Scaling Model in Experiment 1

Index

Number of matrices
25th percentile
50th percentile
75th percentile
% for which p<. 01

3-5

14
.70
.85
.91
64

Matrix size

6or7

7
.57
.74
.85
79

8

144
.64
.79
.87
83

pear in Part 2. Thus, 172 matrices were scaled, and for each a
linear correlation was calculated between observed responses
and those predicted by the geometric-mean scaling model. The
distribution of correlations is summarized in Table 2 as a func-
tion of matrix size. The last row in the table shows the percent-
age of correlations that are significantly different from zero at
each matrix size. It can be seen that the model reproduces the
data to a reasonably good degree. For example, at matrix size
8, the model accounts for at least 62% of the response variance
(0.792) in 50% of the cases, and for at least 41% (0.642) of the
response variance in 75% of the cases.

One may ask whether subjects judged some expressions with
more internal consistency than others, so that the scaling model
provided a better fit in those cases. The top part of Table 3 shows
the mean linear correlation between observed and predicted re-
sponses for the geometric mean model separately for each ex-
pression. The Session 2 and Session 3 presentations of possible
are combined, because they were not different. Note that tossup
is fitted considerably better than the other expressions on the
average, but that otherwise there are no substantial differences
among the terms.

We now turn to the scale values to consider how reasonable
they are as membership functions. For this analysis, the derived
values from each matrix were multiplied by a suitable constant
so that the maximum value equaled one. The normalized values
were plotted separately for each subject and each expression as

a function of the spinner probabilities of landing on white. We
will use the term membership function for the resulting graphs.
Figure 5 illustrates the membership functions from 3 different
subjects to show the range of results obtained.

Subject 1 has monotonic membership functions with the ex-
ception of that for tossup. The remaining terms each span a
range of probabilities, and the probability best described by
each term is at one end of the range. Because Subject 1 set the
upper and lower probability limits for tossup equal to each
other, its membership function is a point.

Subject 23 has membership functions that tend to be single
peaked. Thus, for this subject each expression spans a range of
probabilities and the probability best described by that expres-
sion is somewhere in the center of the range.

Subject 6 has both kinds of membership functions. This sub-
ject also illustrates functions that are not quite as well behaved,
having two or even three peaks.

Recall that the functions for each expression were arbitrarily
adjusted to have a maximum of one, so that comparisons of
ordinate values over terms is not meaningful. Also, ordinate
values do not extend quite to zero, because the method of select-
ing probabilities based on Part 1 judgments purposely omitted
probabilities with such membership values.

The various functions can be characterized as either point
(4%), flat (2%), monotonic increasing or monotonic decreasing
(30%), single peaked (31%), or as having two (26%), or up to
four peaks (7%). The point, flat, monotonic, and single-peaked
functions might all be considered reasonable, in terms of the
supposed underlying semantics, whereas the others cannot eas-
ily be so considered. Overall, 67% of the functions were reason-
able by this criterion. If these double-peaked functions in which
one peak is minor are also included, then about 75% of the func-
tions are reasonable and interpretable.

The bottom part of Table 3 shows the percentage of types of
membership functions obtained for each term. For these
purposes it was assumed that the multipeaked functions con-
tained noise, and they were classified in with the flat, monotone
increasing, single peaked, or monotone decreasing functions, as
appropriate. It can be seen first that there was no expression for
which all subjects had the same shape function. Second, terms
closer to the extremes tended to have more monotonic than sin-

Table 3
Mean Goodness-of-Fit Correlations and Percentages of Different Shapes of Membership Functions for Each Term in Experiment 1

Almost Good Almost
Shape certain Probable Likely chance Possible Tossup Unlikely Improbable Doubtful impossible

All .76 .73 .75"

Goodness-of-fit correlations

.73 .73" .93 .70 .80 .76 .85

Percentage of different membership function shapes

Point
Flat
Monotonic increasing 90
1 peak 10
Monotonic decreasing

5
60 45 45
40 50 45

10

25
12
12
58 75
18

50
50

20
80

25
75

20

20
60

* Excluding solutions with equal scale values.
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Figure 5. Derived membership functions for three subjects in Experiment 1. (The functions are coded as
follows: AC = almost certain; AI = almost impossible; D = doubtful; GC = good chance; I = improbable;
L = likely; Po = possible; Pr = probable; T = tossup; U = unlikely.)

gle-peaked functions, whereas terms near the middle of the
probability range tended to have more single-peaked than
monotonic functions. Tossup and almost impossible had point
meanings for a few people. Finally, all forms of functions except
point were obtained for possible.

However, even membership functions of the same type for a
term did not look the same over subjects. The three expressions
for which the highest agreement on meaning was obtained are
almost impossible, almost certain, and tossup. Their member-
ship functions from all subjects are shown in Figure 6. Five sub-
jects have point functions for tossup, 2 have single-peaked func-
tions that look different from the others, and the remaining 13
subjects show very similar functions. Almost impossible and al-
most certain show more variability over subjects.

Expressions that are not near the anchor points of 0,0.5, and
1 show even greater individual differences. As one example, the

membership functions for the word doubtful are shown in Fig-
ure 7. For purposes of clarity only, the monotonic functions
are shown on the top half of the figure and the single-peaked
functions are shown on the bottom half. Note that some func-
tions cover a large range and some a much smaller one. The
peaks of the functions range from probability values close to
zero to approximately 0.17. Analogous results hold for the
other terms as well.

Part 3. The number of pairs of expressions and the number
of probabilities per pair that a subject judged depended on the
upper and lower limits set in Part 1. Combining over both ses-
sions, the number of pairs judged per subject ranged from 1 to
18 with a mean of 11.5 and a standard deviation of 4.4.

The number of probabilities judged per pair of expressions
ranged from 1 to 8, except that up to 16 probabilities were
judged with pairs including possible in Session 3. Combining
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Figure 6. Membership functions from all subjects in Experiment 1
for almost certain (AC), almost impossible (AI), and tossup (T).

over sessions, the mean number of probabilities judged per pair
was 8.4 with a standard deviation of 1.4.

The analysis involved evaluating the predicted linear relation
between Part 3 judgments converted to ratio scores and ratios
of the membership function values derived in Part 2. Because
the same probabilities were not generally presented with a term
in the two parts, membership function values for probabilities
used in Part 3 were estimated by linearly interpolating between
the values derived for the two adjacent probabilities that were
used in Part 2. The ratios of the estimated values were then used
in Equation Bl (see Appendix B) to predict the judgments, R,
converted to ratios of distances, S = R/(l - R), where, as be-
fore, R - 0 and 1 were converted to 0.0156 and 0.9844, respec-
tively.

If ftj, ft = 1 for all Wi and W-} in Equation Bl, then within a
pair of phrases the ratio of distances should be a linear function
of the ratio of membership function values. This prediction was
evaluated by means of a simple linear correlation pooled over
phrase pairs for each subject in order to increase power. By
pooling over expression pairs, the number of observations per
correlation ranged from 7 to 146 over subjects (M = 83.2, SD =
37.7). The mean pooled correlation over subjects was 0.37, with
a standard deviation of 0.23. Thirteen of the 20 correlations
were significantly different from zero at/? < 0.05.

Discussion

The results of Experiment 1 are quite encouraging overall,
although in hindsight some design features were problematic.
Part 1 provides the sole point of comparison between this study
and others that have used a more traditional method to assess
the meanings of probability phrases. The usual finding when

subjects are asked to give numerical equivalents to probability
phrases is considerable between-subjects variability that is in-
versely related to distance from the center of the scale. This is
precisely the pattern we obtained for the judgments of upper
and lower probability limits.

The data of primary interest, of course, are from Part 2. De-
spite the lack of good inferential statistics, it seems justifiable
to say that the weak monotonicity axiom was well satisfied in
the vast majority of cases. This, in conjunction with the fact
that the other necessary conditions were forced to be satisfied
by the data collection procedure, provided justification for ap-
plying the metric models to the data. The scaling models fit well,
accounting on the average for about 56% of the variance in the
observed judgments without fitting a single free parameter.
Nonmetric scaling procedures or procedures involving the esti-
mation of free parameters might have done even better. Never-
theless, the derived scale values were generally of reasonable
shape, and predicted the Part 3 responses to a relatively high
degree. Thus, it appears justifiable to conclude that subjects can
compare degrees of membership in a way that leads to consis-
tent, meaningful, and interpretable scaling of vague meanings
according to either a ratio or a difference model. However, it
must be emphasized that nothing in the data allows us to deter-
mine whether subjects are more likely to judge ratios or differ-
ences. Another conclusion is that even in the context of the pres-
ent experiment, in which the probabilities are well defined,
there are large individual differences in the vague meanings of
probability phrases.

We allowed unique probability values to be associated with
each expression over subjects because we expected considerable
individal differences, and because we were uncertain as to what

Doubtful

U>
<X8

<X6

04

0.2

QO

Monotonic

IX)

0.8

OA

04

0.2

00

Single Peaked

OJO O2 0.4 0.6

Probability

0.8 1.0

Figure 7. Membership functions from all subjects
in Experiment 1 for doubtful.
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Table 4
Expressions and Probability Values Used in Experiment 2

Probabilities (XI00)

20 30 40 45 47 50 53 55 60 75 85 95

List 1

Probable
Good chance
Tossup
Doubtful X X

X

X

X
X
X
X

X
X
X
X

X
X

X
X
X X
X

X
X

X

X

X
X

X X
X

List 2

Likely
Good chance
Tossup
Improbable X X

X

X

X
X
X
X

X
X
X
X

X
X

X
X
X
X

X
X X

X

X

X
X

X X
X

probability range would be appropriate for a large group of peo-
ple. However, problems emerged as a result of individualizing
the stimuli for each subject. First, all the trials in Parts 2 and
3 depended on a single determination of an upper and lower
probability per term. If a subject made an error in Part 1 by
setting a limit too high or too low, that error affected all the
subsequent results. Note in Figure 6, for example, the two sin-
gle-peaked functions for tossup that are different from the oth-
ers. One would expect the derived membership function to ex-
tend closer to zero. If in Part 1 those two subjects had provided
lesser lower bounds and greater upper bounds, then a larger
range of probabilities would have been presented to them in
Part 2 and presumably more complete functions would have
been derived.

As a further result of the strong reliance on the Part 1 judg-
ments, there was no good way to evaluate the stability over time
of the membership functions for possible. This is because sub-
jects tended to set different upper and lower probability limits
for this term in the two sessions, resulting in different pair com-
parisons. We originally selected possible on the assumption that
it would cover the broadest probability range and therefore pro-
vide the most sensitive test. In retrospect, the semantics of pos-
sible are very complex and subjects probably attributed differ-
ent meanings to the phrase in the two sessions.

There are yet two more consequences to having determined
the Part 2 and 3 stimuli uniquely for each subject and for each
part. One is that it was difficult to compare a phrase's member-
ship functions over subjects. Membership functions that differ
in shape are obviously distinct. However, two functions of the
same shape may have distinct values at a given point, which is
due only to the particular probabilities presented to the subject.

The other consequence is that predictions from Part 2 to Part
3 were weakened because it was necessary to base them on lin-
ear interpolations. Predictions would have been much more di-
rect had they involved the same probabilities appearing with
the phrase in Parts 2 and 3.

Finally, subjects did not report the task to be as difficult as
we originally had envisioned they would. Thus, it might not
have been necessary to have presented each probability pair
only once for an expression in Part 2 and each expression pair

only once for a probability in Part 3. Had each combination
been presented at least twice (with the left-right ordering of the
pairs reversed in half the trials) it would have been possible to
have checked the sign reversal axiom, to have obtained a more
thorough test of weak monotonicity (because more cells would
have been involved), and to have determined empirically
whether the response matrix was reciprocal. Thus, a second ex-
periment was performed to provide more reliable membership
functions and more complete tests of the predictions.

Experiment 2

Method

Subjects. From each of the two phrase-list groups in Experiment 1,
the 4 subjects with the highest mean goodness-of-fit correlations for the
geometric mean scaling model were invited to take part in this study.
Each of the 8 was promised $15 for two sessions of approximately an
hour and a quarter each.

Procedure. There was no Part 1. (However, for the sake of continuity,
we will continue to denote the other two parts of the sessions as Part 2
and Part 3, respectively.) Rather, probabilities were selected on the basis
of results from Experiment 1 and the same values were used for all sub-
jects.

Table 4 shows the expressions and associated probability values that
were used. List 1 consisted of doubtful, good chance, tossup, and proba-
ble, whereas List 2 included improbable, good chance, tossup and likely.
Part 2 used all possible pairs of the seven probabilities indicated for each
term in the table. Part 3 used all possible pairs of the terms indicated
for each probability. Full left side by right side factorial designs were
run within each session. That is to say, in Part 2, each distinct pair of
probabilities was presented twice with each expression in each session,
once in one left-right orientation and once in the reverse orientation.
Similarly, in Part 3 each expression pair was presented twice with each
probability in each session, once in each orientation. Within each part,
presentation order was random.

The response procedure was also changed, so that subjects used a
joystick to move the arrow on the response line. When the arrow was
located in the desired position, the subject registered that response by
pressing a button on the joystick assembly. Whereas in the previous
experiment the arrow could be located at any one of 17 discrete loca-
tions, the response line was essentially continuous in this study, limited
only by the resolution of the screen.



MEASURING VAGUE MEANINGS OF PROBABILITY TERMS 359

Table 5
Reliability Correlations for Parts 2 and 3 and Satisfaction
Indexes for the Weak Monotonicity Axiom: Experiment 2

Reliability
correlations

Subject

1
4
8
9

14
16
17
20
M

Part 2

.89

.93

.96

.75

.78

.97

.89

.88

.90

Part3

.93

.83

.81

.89

.61

.98

.93

.95

.90

Satisfaction
index

90
90
91
86
90
91
90
91
90

Each subject was tested on the full design within each of two sessions
with approximately two days intervening.

Results

Reliability. Linear correlations were used to assess reliability
separately for Parts 2 and 3. The results are shown by subject in
the first two columns of Table 5. (In this and subsequent tables,
marginal mean correlations are based on Fisher's r-to-z trans-
formation.) All subjects demonstrated quite high reliability,
with Subject 9 showing the lowest Part 2 correlation and Subject
14 showing the lowest Part 3 correlation. Considering this re-
sult, most subsequent analyses were done over the two sessions
combined.

Weak monotonicity. By using mean responses over the two
sessions, this axiom was checked in the same manner as in Ex-
periment 1. However, because the full P X P matrix was re-
sponded to for each phrase, [«!/(« - 3)!]2 - [n\/(n - 3)!] subsets
of cells are available for test in each P X P matrix. For n = 1, a
total of 43,890 subsets of cells can be tested for each phrase.

The last column in Table 5 shows the mean percentage of
monotonicity tests that were satisfied. It can be seen that the
axiom is extremely well satisfied for all subjects. The mean satis-
factions for the terms doubtful and improbable are 75% and
83%, respectively, but those for the other four terms vary be-
tween 92% and 94%.

Sign reversal and reciprocity. If for a given P X P matrix the
entry in cell p\p-} is the complement of that in cell Pjpit then the
axiom of sign reversal is satisfied. In addition, the matrix for
ratio scaling obtained by the transformation in Equation A4
will be reciprocal. An evaluation of complementarity is ob-
tained by calculating the correlation for responses in cell p-j>^ as
a function of those in cell p^, as well as by fitting a linear struc-
tural model to these values (Isaac, 1970). Ideally, the correlation
and the slope of the best fitting line will both be -1. A linear
structural model differs from a regression model in that it al-
lows random error in both coordinates, not in just one. These
analyses were applied to the response matrices for both Part 2
and Part 3. Mean slopes and pooled correlations for each subject
are shown in Table 6, where it can be seen that the slopes and
the correlations are very close to -1 for all subjects.

Ratio scaling and membership functions. Part 2 responses
were transformed according to Equation A4 (setting R = 0 and
1 equal to 0.004 and 0.9996, respectively), and the geometric
mean scaling model was applied to them. Goodness-of-fit cor-
relations are shown in Table 7 separately for each subject and
phrase, but averaged over sessions. It can be seen that goodness
of fit is excellent, with the lowest correlation being 0.81 for
likely for Subject 16.

Normalizing the scale values from the separate matrices to
have a maximum of 1 and plotting them as a function of the
probabilities demonstrates that the Session 1 and Session 2
membership functions for each subject are quite similar, as
would be expected given the high reliability. Thus, average
membership functions were obtained by applying the geomet-
ric-mean model to the mean responses of Sessions 1 and 2. The
results are shown in Figures 8 and 9, respectively, with a sepa-
rate panel for each subject. As in Experiment 1, all subjects
demonstrate similar membership functions for the word tossup.
The functions for doubtful are also quite similar in shape, but
those for the remaining expressions show remarkable differ-
ences over subjects. Application of nonmetric scaling proce-
dures resulted in functions substantially similar to those shown
in Figures 8 and 9.

Predicting Part 3 responses. Note in Table 4 that only three
probability values (0.40, 0.45, and 0.50) were each associated
with all four terms, whereas the remaining probabilities that
appeared in Part 3 were associated with only two terms each.
Thus, predictions are possible only for trials that included these
three values.

For each of these values, there was a left side by right side,
term by term factorial design, except of course omitting the di-
agonal cells. Scale values derived in Part 2 were used in Equa-
tion Bl to predict Part 3 responses transformed to a ratio of
distances and combined over reciprocal cells for increased sta-
bility. On the assumption that all constants in the equation are
equal to 1, the prediction is evaluated by calculating the linear
correlation between predicted and observed values at each of
the three probabilities. Results by subject are shown in Table 8,
where it can be seen that the prediction is quite well sustained
for all except Subjects 16 and 20.

Finally, the factorial design at each of the three probabilities

Table 6
Mean Slopes from the Linear Structural Model and Pooled Cor-
relations for Responses in Cell (j, i) as a Function of Cell (i, j),
Over Terms and Sessions in Experiment 2

Subject

1
4
8
9

14
16
17
20
M

Slope

-1.00
-1.00
-1.05
-.98
-.94

-1.03
-1.00
-.92
-.99

Part 2

Correlation

-.92
-.93
-.94
-.85
-.88
-.98
-.88
-.92
-.92

Part3

Slope

-1.01
-.97
-.87
-.88

-1.08
-.98
-.91

-1.02
-.97

Correlation

-.96
-.97
-.86
-.95
-.85
-.99
-.96
-.95
-.95
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Table 7
Mean Linear Correlations Between Observed and Predicted Responses for the Geometric-Mean Model: Experiment 2

Subject Probable Likely Good chance Tossup Improbable Doubtful

1
4
8
9

14
16
17
20
F

.93

.97

.98

.78

.96

.91

.81

.98

.95

.93

.88

.96

.99

.91

.89

.84

.97

.92

.94

,93
.96
.96
.83
.97

1.00
.88
.94
.95

.97

.97

.96

.98

.97

.97

.98

.98

.96

.97

.95

.97

.98

.89

.95

.95

.96

.95

.95

allows a geometric-mean ratio scaling of the response matrices
by using equations analogous to Equations A4, A5, and A6. As
shown in Equation B3, the resulting membership function val-
ues, HP (W), should be a power function of those derived in Part
2, jtw (p), if they both represent the same vagueness construct.

Power functions were fitted to the scatter plot of /tp (W) versus
MW (p) for each subject, and were assessed by means of F ratios.
The F ratios ranged from 43.2 to 7,461 over subjects, with a
median value of 143. Although inferential statistics are not ap-
propriate (because the data points are not independent), it is
descriptively clear that the functions fit very well.

Discussion

Experiment 2 seems to have overcome the problems of Ex-
periment 1 while substantiating its main results. Because sub-

jects were selected for inclusion in this study on the basis of
their scaling results in Experiment 1, it is perhaps not surprising
that the algebraic difference structure axioms were well satisfied
and that the geometric-mean ratio-scaling model described the
judgments to a high degree in each case. However, it was neces-
sary to obtain the good fits in order to test properly the other
predictions.

The first notable result is that judgments were very stable over
the two sessions, but differed considerably over subjects for all
terms except tossup. As a consequence, membership functions
for all the other terms varied widely and reliably over subjects.
Tossup yielded similar single-peaked functions for all eight sub-
jects. Doubtful yielded different monotonic decreasing func-
tions for the four subjects who judged it, and the remaining
phrases resulted in both monotonic and single-peaked func-
tions. Furthermore, in these cases, same-shaped functions did
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Figure 8. Membership functions for Subjects 1,4, 8, and 9 in Experiment 2. (The functions
are coded as follows: D = doubtful; GC = good chance; Pr = probable; T = tossup.)
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Figure 9. Membership functions for Subjects 14,16,17, and 20 in Experiment 2. (The functions
are coded as follows: GC = good chance; I = improbable; L = likely; 1 = tossup.)

not take on similar values, so that none of the remaining terms
had precisely the same functions for any 2 subjects.

It is of interest to compare these membership functions to
their counterparts in Experiment 1. Recall that the subjects in
this experiment also participated in the first one, and that they
had judged the same expressions (among others) at that time.
Because different probability values were used in the two stud-
ies, the only possible comparisons are in terms of membership
function shapes. Of the 32 comparisons (8 subjects X 4 expres-
sions each), derived membership functions were similar in
shape in 25 cases. Of the remaining 7 cases, 6 changed from

Table 8
Linear Correlations Between Observed and Predicted Part 3
Responses Transformed to Distance Ratios in Experiment 2

Subject

1
4
8
9

14
16
17
20
7

.40

.71

.85

.87

.73

.60

.43

.93

.76

.77

Probability

.45

.77

.95

.74

.97

.86

.57

.78

.27

.82

.50

.99

.95

.89

.85

.98

.88

.82

.55

.92

r

.91

.93

.84

.89

.89

.68

.86

.56

.85

point or monotonic to single peaked, and 1 changed from single
peaked to monotonic decreasing.

On two grounds, it is reasonable to assume that the member-
ship functions in this experiment in fact represented the vague
meanings of the phrases to the subjects in this context. First,
they all had sensible shapes. But of greater importance, they
predicted independent judgments in Part 3 very well. Freed
from the necessity of interpolation, ratios of membership func-
tion values derived in Part 2 correlated very highly with ratios
of Part 3 responses converted to distances. In addition, mem-
bership function values independently derived from judgments
in Parts 2 and 3 were related by a power function, as they were
predicted to on the assumption that they were both measures
of the same construct.

General Discussion

Methodological Issues

We have demonstrated that in a specific context an individu-
al's understanding of the vague meaning of a nonnumerical
probability expression can be measured in a valid and reliable
way. Previous studies in which membership functions have been
constructed from choice probabilities have been criticized as
doing little more than relabeling measurement and sampling
error as construct vagueness. Studies that used magnitude esti-
mation procedures have addressed vagueness directly, but fre-
quently without a way to assess the meaningfulness or validity
of the resulting scales. The procedures used in the present ex-
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periments avoided these problems. Subjects directly compared
degrees of membership of a stimulus in two ill-defined catego-
ries within an experimental design that yielded three converg-
ing means for assessing the quality of the judgments.

First, conjoint measurement provided the theoretical ratio-
nale for numerically scaling the judgments. Therefore, evalua-
tion of the necessary conjoint-measurement axioms provided a
means of evaluating the internal consistency of the judgments
prior to numerical scaling. If the axioms had failed empirically,
then we would have concluded that the subjects were not judg-
ing degrees of membership according to the difference or ratio
rule that was to underlie the numerical scaling. Consequently,
such scaling would have been inadmissible.

Because the axioms were generally well satisfied, the numeri-
cal scaling procedures were applied to the judgments. Good-
ness-of-fit measures, namely, the correlations between observed
and predicted responses, provided a second validity check. If
the fits had been poor, then we would have concluded that the
judgments were not represented well by the scales. We used
metric scaling procedures that utilized no free parameters, and,
particularly in Experiment 2, achieved excellent fits. Had that
not been the case, nonmetric methods with parameters fit to
data could have been used. Goodness of fit would have im-
proved, but not necessarily to an acceptable level.

Although the two checks on the validity of the measurement
procedures were passed, it is not necessary to conclude that sub-
jects were judging the semantic vagueness of the term. They
could have been consistently judging some other quality in-
stead. The third validity assessment, in the spirit of construct
validity, was achieved by using the derived membership func-
tion values to predict independent judgments that were pre-
sumed to be based on the underlying vagueness dimension. The
predictions generally were borne out, and consequently it ap-
pears justifiable to claim that the vague meanings of the terms
were measured.

From the usual perspective of test theory, reliability is logi-
cally prior to validity and therefore must be established first.
Judgments were reliable in Experiment 2 by the usual criteria,
as were Part 1 upper and lower probabilities for possible in Ex-
periment 1. However beyond the high test-retest correlations,
the derived membership functions for each subject in Experi-
ment 2 were very similar over the two sessions, and indeed, gen-
erally reproduced the membership function shapes derived
some 10 weeks earlier for corresponding terms in Experiment
1. This can be taken as further evidence that the subjects were
judging an enduring property of the expressions.

On all the above grounds, we believe that the methodological
aims of the study have been satisfied, and that we have estab-
lished a means for validly measuring the vague meanings of
nonnumerical probability expressions. The results of Experi-
ment 1, in which 20 subjects judged 10 phrases, were substanti-
ated and refined in Experiment 2, in which 8 experienced sub-
jects judged 6 phrases. Although we have not done so, there is
no reason to think that the procedures could not be applied to
other linguistic variables or vague categories as well.

Substantive Issues
Numerous questions of substantive interest are raised by

these results. First, it must be emphasized that the data clearly

support the claim that nonnumerical probability expressions
convey vague uncertainties. It is noteworthy that such results
were obtained despite the fact that the probabilistic events
(spinner pointers landing on white) were exactly specified and
easily judged numerically. To check the truth of this latter state-
ment, three subjects subsequently provided numerical judg-
ments of these spinner probabilities with essentially no error.
Also, subjects gave virtually errorless probability estimates of
physical spinners in a study by Wallsten (1971). Thus, the
vagueness can be attributed to the verbal expressions, and not
to the perceived uncertainty.

Individual differences. Of course, it is just when the uncer-
tainty and the events are ill defined that nonnumerical expres-
sions are normally used. On the basis of Beyth-Marom's (1982)
results, we expect that individual differences in understanding
these expressions would be even greater in such ill-defined situ-
ations than in the present context. Alternatively, it might be ar-
gued that the large individual differences emerged because each
person developed his or her own strategy for coping with the
unnatural task of using nonnumerical probability expressions
in a situation involving precise probabilities. Consequently, in-
dividual differences would be less in more natural situations.
The claim strikes us as unlikely, but it cannot be dismissed at
this point. However, the methodology can be extended easily
to ill-defined uncertainties where the competing claims can be
investigated. Should consistent individual differences remain in
the location and shapes of membership functions under more
natural conditions, it would become necessary to identify char-
acteristics, such as experience, training, or linguistic back-
ground, that would correlate with them.

Context effects. The meanings of nonnumerical probability
phrases, even to an individual, are almost assuredly not fixed
over contexts. Thus, the precise numerical aspects of the pres-
ent results should not be taken too seriously. Various systematic
context effects may be identified.

For example, Pepper and Prytulak (1974) have shown that
the interpretations of relative quantifiers such as frequently or
sometimes depend on the expected frequency of the event being
described; Cohen, Dearnley, and Hansel (1958) have shown that
the interpretations of quantifiers of amount such as some or
several depend on the available quantity; and Wallsten, Fillen-
baum, and Cox (1986) have shown that the interpretations of
probability expressions depend on the base rate of the event in
question. In addition, we may speculate that event importance
and desirability also affect the meanings of probability expres-
sions.

Zimmer (1984) has suggested that the interpretations of
probability expressions vary over knowledge domains. He has
proposed a model in which each phrase has a basic meaning
represented by a membership function, which is then operated
on by a context-specific "scope function" to yield the phrase's
context-bound meaning. Whether or not this intriguing model
is correct, it is reasonable to expect changes in the probability
ranges covered by an expression, or changes in the relative mag-
nitudes of membership values, as a function of knowledge do-
main.

Semantics. In Experiment 1, 55% of the membership func-
tions were monotonic, 39% were single peaked, and 6% were
point or flat. In Experiment 2,56% of the functions were mono-
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tonic and 44% were single peaked. Furthermore, the extreme
expressions tended to yield monotonic functions, whereas the
more central ones tended to yield single-peaked functions.

It is noteworthy that similar distributions of function shapes
occurred in other studies using other domains. Hersh and Cara-
mazza (1976) considered the terms small and large along with
the modifiers not, very, very very, not very, not very very, and sort
of, as applied to squares of different areas. Hersh et al. (1979)
investigated the terms short and long alone and with the modi-
fiers very and sort of as applied to line lengths. Norwich and
Turksen (1984) investigated tall, very tall, not tall, and short,
and Mac Vicar-Whelan (1978) looked at tall and short, alone
and in combination with very, all with regard to men's heights.
Kuz'Min (1981) considered cold and warm along with numer-
ous modifiers as applied to water temperature for swimming,
as well as obsolete and up to date with and without modifiers as
applied to age of journal articles with regard to relevance. Fi-
nally, Zysno (1981) considered old and young, alone and with
very, applied to men's ages. The studies used various empirical
procedures, some of which we have taken issue with earlier, but
generalizations do emerge. In particular, the majority of the
membership functions were monotonic. Single-peaked func-
tions occurred more frequently with hedged expressions (e.g.,
sort of large), with expressions that naturally occupy a mid-
range on a continuum (e.g., warm), and occasionally with cer-
tain expressions when a clearly more extreme one was also be-
ing considered (e.g., large in the presence of very large).

Given the similarity in distribution of function shapes be-
tween the present experiments and the others, it is plausible to
assume that this aspect of the results is not artifactually due to
the spinner context. Thus, although probability values repre-
sented by phrases change with context, perhaps the shapes of
the functions for an individual do not. If this were so, it might
be possible to relate an individual's use of specific expressions
to his or her membership functions for them.

Undoubtedly, people select and understand probability
phrases not only as representing amounts of uncertainty, but
also as representing degrees of confidence in that uncertainty,
expectation that the uncertainty may change with information,
as well as other factors. An interesting possibility is that some
of these factors may be captured by the function shape. For ex-
ample, perhaps an expression selected by an individual to rep-
resent a firmly established level of uncertainty following receipt
of information would be either monotonic or sharply single
peaked for this person, whereas another expression selected to
represent more diffuse uncertainty would be broadly single
peaked.

Another possibility is that selection or understanding of
phrases may relate to their relative membership values for an
individual. Recall that in the present derivation of membership
functions, the maximum membership value for each expression
was arbitrarily set to one. However, direct comparisons of rela-
tive membership values could be elicited. Thus, some terms
such as possible might have uniformly low membership func-
tion values, whereas others such as tossup or almost certain
would have high values for some probabilities.

The procedures developed in our experiments provide some
insight into individuals' use of probability terms. More impor-
tant, however, they provide the means for investigating ques-

tions of the sort raised in the latter part of this discussion re-
garding how people form and communicate vague opinions.
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Appendix A

Scaling Models

One approach to applying the metric scaling models proceeds as fol-
lows. Consider the difference model first. Assume that for a given expres-
sion W and probability pair pjjj, the subject places the arrow on the
response line such that the difference in the distances of the arrow from
the two ends is inversely proportional to the difference in the degrees to
which ^describesft and PJ . Thus, the response R^ij) can be converted
to a difference score D for purposes of scaling:

Z)w(y) = 2JRw(y)-l. (Al)
The proportionality assumption plus an assumed error component
yield

Av(y) = «W[MW(A) - MW(PJ)] + eWij, (A2)

with aw > 0. Considering the full matrix of difference scores for phase
W, a least squares estimate of w (pi) is obtained by taking row means.
In other words, from Equation A2,

= 2 (A3)

where n is the size of the matrix and «w = 1. The scale values, of course,
are unique up to the transformation, MW (Pi) = «WMW(A) + ;8w and can
easily be rescaled to be positive with a maximum at 1.

For the ratio-scaling models, it is assumed that the arrow is placed on
the response line such that the ratio of the distances of the arrow from
the two ends is inversely proportional to the ratio of the degrees to which
W describes p\ and PJ . Thus, the response R is converted to a ratio score

(A4)

with /My) ̂  0, 1. Now the proportionality assumption plus assumed
error yields

(A5)

(A6)

with «w > 0. The geometric means (GMs)

Mw (A) =
l/n

with aw = 1, are least squares estimates of the logarithms of the scale
values (Torgerson, 1958), assuming that the matrix is reciprocal, that
is, .Sw(y) = 1/SwOO- The resulting scale values are unique up to the
transformation, MW(A) = «wMw(ft)'Sw, with aw, /3W > 0.

An alternative ratio-scaling procedure, anticipated by Gulliksen
(1958), also requires a reciprocal matrix. Scale values can be obtained
from the matrix by an eigenvalue-eigenvector decomposition, obtain-
ing either a normalized right eigenvector (RE) (Saaty, 1977, 1980), a
normalized left eigenvector (LE) (Johnson et al., 1979), or the geometric
mean of the two eigenvectors (ME) (Budescu, 1984). If a reciprocal ma-
trix is consistent that is, for any three entries, S(ij), S(jk), and S(ik),
S(ik) = S(ij)S(jk), then GM, RE, LE, and ME all yield the same scales.
Otherwise they do not, and there is currently some controversy concern-
ing the merits of each solution. Properties of the various solutions have
been investigated mathematically (e.g., De Jong, 1984; Jensen, 1984;
Saaty & Vargas, 1984) and with Monte Carlo procedures (e.g., Budescu,
Zwick, & Rapoport, 1986; Johnson et al., 1979; Crawford & Williams,
1985).

Appendix B

Cross Validation

The predictions are derived here only in terms of scales obtained from
Equation A6, because ultimately those were the values with which they
were tested. Consider an experimental trial with probability p and terms
Wi and Ws, for which the subject sets the arrow at location jRp(y'). (Note
the shift in notation to correspond with the change in the structure of a
trial. We are now assuming a fixed p and a set of terms T = {W\,...,
Wm}.) The response value /?p(y') is transformed to 5p(y) by Equation
A4 (with indices suitably changed). If the previously derived scale val-
ues nv/i (p) and /iW. (p) represent the degree to which p is a member of
W-, and PFj, respectively, then it should be the case that

(Bl)

where t>, ft, ft > 0. For clarity, the scaling parameters are not fully sub-
scripted. But they have been included in Equation Bl, because it is im-
portant to note what assumptions are being made about them.

Consider first a fixed pair of phrases W\ and W, and various p, all of
which have nonzero membership functions in H7; and W-r If it is as-
sumed that ft = ft = 1, then from Equation Bl, the £„((/) should be a
linear function of the ratios of the derived membership functions. This
prediction was tested in Experiment 1.

Now consider a fixed probability p with various phrases Wi,W2,...,
Wm. In this case, Sf(ij) is a linear function of the ratio of the derived

membership functions only if it is assumed that S = ft = ft = 1 for all
Wi and Wj. This prediction is tested in Experiment 2.

A very strong prediction emerges if for a given p there is a left side X
right side, TXT factorial design, in which T is the vector of probability
terms. The data matrix for each p can be scaled in a manner analogous
to that described with Equations A4, A5, and A6. The resulting scale
values, af(W), are unique up to a power transformation, ^ (W) =
«pMp (W/'> with «p, ft, > 0. Omitting subscripts, on the reasonable
assumption that iif(W) and *iw(.P) both represent the same vagueness
construct, it is easy to show that the two sets of derived values should
be related by a power function. This is done by setting the generalized
forms of the scale values equal to each other,

awMw(p)"w = apMpW", (B2)
and solving for /*w (p)- Setting a = ap/<*w and /3 = |8P/|8W, the result is

p£W) = anv(pf, (B3)

with a, |8 > 0. Equation B3 is tested in Experiment 2.
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