Dynamics of a Developmental Switch: Recursive Intracellular and Intranuclear Redistribution of Caenorhabditis elegans POP-1 Parallels Wnt-Inhibited Transcriptional Repression

Morris F. Maduro,* Rueyling Lin,† and Joel H. Rothman*,1
*Department of Molecular, Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, California 93106; and †Molecular Biology, UTSW Medical Center, 6000 Harry Hines Blvd., NA8.320, Dallas, Texas 75390-9148

POP-1, a Tcf/Lef factor, functions throughout C. elegans development as a Wnt-dependent reiterative switch to generate nonequivalent sister cells that are born by anterior–posterior cell divisions. We have observed the interaction between POP-1 and a target gene that it represses as it responds to Wnt signaling. Dynamic observations in living embryos reveal that POP-1 undergoes Wnt-dependent nucleocytoplasmic redistribution immediately following cytokinesis, explaining the differential nuclear POP-1 levels in nonequivalent sister cells. In unsignaled (anterior) but not Wnt-signalized (posterior) sister cells, POP-1 progressively coalesces into subnuclear domains during interphase, coincident with its action as a repressor. While the asymmetric distribution of POP-1 in nonequivalent sisters apparently requires a 124-amino-acid internal domain, neither the HMG box nor β-catenin interaction domains are required. We find that a transcriptional activator, MED-1, associates in vivo with the end-1 and end-3 target genes in the mesoderm (anterior sister) and in the endoderm (posterior sister) following the asymmetric cell division that subdivides the mesendoderm. However, in the anterior sister, binding of POP-1 to the end-1 and end-3 genes blocks their expression. In vivo, binding of POP-1 to the end-1 and end-3 targets (in the posterior sister) is blocked by Wnt/MAPK signaling. Thus, a Tcf/Lef factor represses transactivation of genes in an unsignaled daughter cell by abrogating the function of a bound activator. © 2002 Elsevier Science (USA)

Key Words: Wnt; MAP kinase; POP-1; Lef-1; asymmetric cell division; transcription.

INTRODUCTION

Members of the TCF/LEF family of HMG box proteins mediate the transcriptional regulatory output of Wnt/Wingless signaling in diverse systems (reviewed in Cadigan and Nusse, 1997; Roose and Clevers, 1999). In the canonical Wnt pathway, signaling inhibits degradation of cytosolic β-catenin, which then enters the nucleus and binds to members of the TCF/LEF family. The β-catenin-TCF/LEF combination comprises a bipartite transcription factor that activates target genes. In the absence of signaling, TCF/LEF proteins can function as repressors through their association with Groucho-like corepressors (Cavallo et al., 1998; Brantjes et al., 2001).

The TCF/LEF factor, POP-1, plays a prominent role throughout Caenorhabditis elegans development as a regulatory switch responsible for reiteratively establishing differences between daughter cells that arise from developmentally asymmetric cell divisions (Lin et al., 1998). POP-1 makes the first of its numerous appearances as such a regulatory switch during establishment of the endoderm in the early embryo. At the four-cell stage, the ventralmost blastomere, EMS, becomes polarized through contact with its neighbor, P2, such that the side of EMS in contact with P2 becomes the E cell when EMS divides (Goldstein, 1993, 1995). This intercellular signal is mediated by an overlapping Wnt/MAPK signaling system (Thorpe et al., 1997; Rochéreau et al., 1997, 1999; Shin et al., 1999; Schlesinger et al., 1999). In the absence of this signal, EMS divides to produce two MS-like daughters and no endoderm is made.

Supplemental data for this article are available on IDEAL (http://www.idealibrary.com).

1 To whom correspondence should be addressed. Fax: (805) 893-2005. E-mail: rothman@lifesci.ucsb.edu.
Promoters via Groucho family corepressors (Roose et al., 1995). These findings indicate that POP-1 represses endoderm fate in MS, while in E, Wnt/MAPK signaling blocks its repressive function (Thorpe et al., 1997; Rooseleau et al., 1997; Fig. 1).

Immunostaining of POP-1 revealed that it is present in many cells throughout development (Lin et al., 1995, 1998). In sister cells arising from cell division along the anterior–posterior (A/P) axis, including MS and E, POP-1 immunostaining is detectable at higher levels in anterior compared to posterior nuclei (Lin et al., 1998), suggesting either differential stability or localization of the protein, or, more trivially, masking of immunoreactive protein in posterior nuclei. Depletion of upstream Wnt/MAPK signaling components eliminates this "POP-1 asymmetry," resulting in symmetrical staining of POP-1 in MS and E, and other A/P sister pairs (Lin et al., 1998; Rooseleau et al., 1999; Shin et al., 1999). Expression of high levels of POP-1 is correlated with anterior fates in many lineages, in both the early embryo and in postembryonic cell divisions, and in many of these cases has been shown to be required for A/P differences (Lin et al., 1995, 1998; Jiang and Sternberg, 1999; Korswagen et al., 2000; Herman, 2001). The mechanism by which nuclear POP-1 levels become different in anterior (unsignaled) and posterior (Wnt/MAPK-signaled) cells has not been determined.

To reveal the mechanisms by which POP-1 repressively establishes differences between nonequivalent sisters, it is necessary to observe its in vivo behavior and interactions with its regulatory targets. The best candidates for direct POP-1 targets are the end-1 and -3 genes, which encode redundant GATA-type transcription factors that zygotically specify the identity of the E cell (Zhu et al., 1997; M.M. and J.R., unpublished observations). Activation of end-1, -3 requires the redundant, zygotically expressed GATA factors MED-1, -2 (Maduro, Lin, and Rothman, 1999). Vertebrate TCFs can mediate repression by recruitment of histone deacetylases to promoters via Groucho family corepressors (Rose et al., 1998; Chen et al., 1998; Brantjes et al., 2001). POP-1 represses endoderm fate in a complex consisting of a Groucho-like protein (UNC-37) and a histone deacetylase (HDA-1), showing that POP-1 represses by an evolutionarily conserved mechanism (Calvo et al., 2001). In a pop-1(-) mutant, MED-1, -2 are required for the endoderm that arises from both MS and E (Maduro et al., 2001). This suggests that activation by MED-1, -2, combined with the asymmetry provided by POP-1, dictates either the MS fate (MED-1, -2 + high POP-1) or E fate (MED-1, -2 + low, or Wnt-modified, POP-1) (Maduro et al., 2001).

Here, we reveal the dynamic behavior of POP-1 as a developmental switch in Wnt/MAPK-signaled and -unsignaled sister cells within living embryos. We find that Wnt/MAPK-dependent "POP-1 asymmetry" is the result of the nucleocytoplasmic redistribution of POP-1 in the signaled sister immediately upon its birth, rather than differences in the total levels of POP-1. This asymmetric intracellular distribution of POP-1 apparently requires an internal 124-amino-acid region, but not the β-catenin or HMG box (DNA binding) domains. We find that in the absence of Wnt/MAPK signal, POP-1 undergoes a progressive relocalization into subnuclear domains during each interphase following cell division. These findings suggest qualitative differences between signaled and unsignaled POP-1. Indeed, by observing direct protein-DNA interactions in individual nuclei of living embryos, we find that these differences are correlated with the ability of POP-1 to bind directly to two of its targets, the end-1 and end-3 genes. While POP-1 binds end-1, -3 in unsignaled (anterior) cells, it is not detectably bound in Wnt/MAPK-signaled cells. We find that MED-1 associates directly with end-1 and -3 in vivo in all early EMS descendants, showing that POP-1 represses target gene expression by inhibiting the activity of a bound activator rather than precluding its binding. These findings suggest that a TCF/LEF factor, POP-1, reiteratively establishes differences in sister cells by Wnt/MAPK-dependent alterations in its intracellular and intranuclear distribution and DNA-binding properties.

MATERIALS AND METHODS

Plasmids and Cloning

DNA manipulation was performed according to standard protocols. All pPD vectors were obtained from Andrew Fire. The mgPOP-1 and med-1::cmyc::POP-1 and similar constructs were made from med-1 reporters (Maduro et al., 2001) by replacing med-1 coding sequences with PCR-amplified segments from a pop-1 cDNA. Reporters containing GFP fused to the carboxyl terminus of POP-1 do not recapitulate POP-1 asymmetry (data not shown). Mutant versions of mgPOP-1 were built either by removing intervening restriction fragments or by using PCR-based strategies. Double-stranded RNAs were synthesized by using the T7 MEGAscript kit (Ambion) from PCR products amplified by primers tagged with T7 promoter sequences. Oligonucleotide sequences and cloning details are available on request.

C. elegans Strains and Genetics

Growth of C. elegans strains was performed according to standard procedures. For transgenics or RNAi, gonadal injection of DNA (~100 ng/μL each plasmid) and RNA (~5 μg/μL) were performed as described (Mello et al., 1991). In some cases, injected hermaphrodites were mated with wild-type or him-8(e1489) males to increase brood size. Constructs were coinjected with either the dominant rol-6 marker pRF4 or the unc-119 rescuing plasmid pDPM11096 into wild-type (N2) hermaphrodites or unc-119(ed4) mutants, respectively. Strains containing two transgene arrays were constructed by combining unc-119-rescued and rol(-6d)-marked lines as described (Maduro et al., 2001). The mgPOP-1 integrant wls117 was isolated after γ-irradiation (3000 rad) of an unintegrated [pMM141 + pRF4] array strain, and screening of F2 progeny for 100% Rol- Expression of wls117, wls117/+; and unin-
FIG. 1. Model for specification of E and MS fates. (A) Abbreviated canonical Wnt pathway (after Herman, 2001). (B) The developmental switch that directs mesendoderm development. Zygotic expression of med-1,-2 is activated at the four-cell stage in EMS, the parent of MS and E. In MS, POP-1 blocks expression of the E-promoting genes end-1 and end-3. In E, modification of POP-1 by Wnt/MAPK signaling, via the WRM-1/LIT-1 kinase, blocks the depressive activity of POP-1, allowing MED-1,-2 to activate end-1,-3 expression. The MS nucleus shows stronger immunostaining than the E nucleus (shown as differential shading), similar to POP-1 staining in other anterior–posterior sisters. In the diagrammed four-cell-stage embryo, anterior is to the left, and dorsal is up.

Detection of Extrachromosomal Arrays
Target end-1 or end-3 arrays were generated by coinjection of an end-1::lacZ or end-3 promoter clone with a lacO multimeric plasmid (pSV2-dhfr-8.32; a gift from Andrew Belmont), heat shock myc-lac plasmids, and unc-119(+):plasmid pDP#MM0168 (Maduro and Pilgrm, 1995). Two hs-NLS-myc-lac constructs were built in steps, using the heat-shock promoters hsp-16-2 and hsp-16-41 (from pDP49.78 and pDP49.83, respectively), the SV40 nuclear localization signal (NLS) from pPD95.67, the LacI ORF (lacking the last six amino acids) amplified from a wild-type Escherichia coli strain, and the 30 carboxy-terminal amino acids of c-myc amplified from plasmid pUHE2 (a gift from David Low). To induce lac expression, transgenic animals were given a 30-min heat shock at 33°C, and fixed after a further 30 min at 22°C.

Transgene POP-1 Rescue
Rescue of pop-1(zu189) was measured as follows. Males from a him-8(e1489); unc-119(ed3); wEx[mgPOP-1 + unc-119(+)] strain were mated to Dpy progeny from pop-1(2z189) dpy-5(e61)/ht1 hermaphrodites. Only progeny embryos that had undergone extensive morphogenesis, in which the pharynx is easily visualized, were scored. Mating of nontransgenic males with pop-1(2z189) m–z– homozygotes does not produce rescue of m–z– progeny (Lin et al., 1995). To confirm rescue by full-length mgPOP-1 in pop-1 m–z– males from the strain pop-1(zu189) dpy-5(e61)/ht1 I; him-5(e1489)/ht1 IV were mated with wls17 hermaphrodites, Rol F1s were selfed, and Dpy F1s were singed. Plates on which the vast majority of F1 progeny embryos failed to hatch (indicating the presence of pop-1(zu189)) were scored for pharynx by Nomarski optics: 9% (29/332) contained a complete pharynx, and 17% (5/29) of these hatched to produce arrested L1 larvae. This approach yields an underestimate for rescue, because not all embryos scored carry the wls17 marker, and because many pop-1(2z189) embryos do not undergo morphogenesis (Lin et al., 1995). Attempts to deplete endogenous POP-1 by RNAi in the mgPOP-1 strain by targeting the pop-1 3′UTR were not successful, perhaps because the pop-1 3′UTR adopts a secondary structure in vivo (Morse and Bass, 1999).

In Situ Hybridization
Detection of the wls17 and end-3::GFP transgene messages was performed by using the in situ hybridization protocol of Seydoux and Fire (1995) with an antisense GFP probe amplified from pPD79.44.

Immunohistochemistry and Fluorescence Microscopy
Detection of POP-1 was performed by using mAbRL2 as described (Lin et al., 1998). For detection of cmyc or GFP, embryos were prepared as described (Zhu et al., 1997) and stained using an anti-myc monoclonal antibody (9E10; Boehringer Mannheim) or a chicken anti-GFP (AB16901; Chemicon) with Jackson Immunolabs anti-myc monoclonal antibody or Sigma secondary antibodies, all at a dilution of 1:200. Anti-GFP or anti-POP-1 staining of GFP::POP-1 gave A/P results similar to GFP fluorescence in live embryos, except that the puncta seen in living embryos were difficult to see after fixation. Anti-POP-1 staining of the mgPOP-1 strain showed ~10× brighter signal from anterior nuclei in the EMS lineage compared with anterior nuclei in other lineages. Polyclonal antisera raised against Histone H4 peptides whose sequences are conserved in C. elegans was obtained from Serotec (#PAN15); includes antisera to nonacyetylated Histone H4, fully acetylated, and acetylated at positions 5, 8, 12 or 16). Images were acquired by using a Bio-Rad 1024 Confocal Microscope or a DVC digital camera on a Zeiss Axioskop 2. Fluorescence images from multiple focal planes were combined and enhanced for contrast by using Confocal Assistant 4.02 (T. C. Brelje) and Adobe Photoshop 6. Pseudocolored images were made with the “thermo” lookup table in Confocal Assistant.

RESULTS
Zygotic Expression of POP-1 in EMS Is Sufficient to Restore MS Development in pop-1 Maternal Mutants
We established a system for analyzing the in vivo dynamics of POP-1 during developmentally asymmetric cell divisions by examining the behavior of a GFP-tagged POP-1 chimera in living embryos. As expression of maternal genes, such as pop-1, is difficult to achieve from transgenes,
we expressed the chimera from the promoter of med-1, one of the earliest expressed zygotic genes in C. elegans. med-1 is first expressed in EMS (Maduro et al., 2001); thus, the GFP::POP-1 might be expected to reveal the response of POP-1 to Wnt/MAPK signaling. We will refer to this construct as mgPOP-1 (for med-1-driven GFP::POP-1; Fig. 2A).

We found that, although POP-1 is maternally required for MS specification (Lin et al., 1995), mgPOP-1 expressed zygotically in EMS was nonetheless capable of providing this POP-1 function. In embryos lacking maternal pop-1 activity, the MS-derived portion (posterior half) of the pharynx is absent and such embryos arrest with ectopic endoderm as the result of a transformation of MS into an E-like cell (Fig. 2B; Lin et al., 1995). Among pop-1(−) embryos expressing mgPOP-1, in which the anterior half of the pharynx could clearly be recognized, ~60% (n = 58; adjusted for transmission frequency of the transgenic array) also contained a posterior pharynx (Fig. 2C). Moreover, the intestine appeared normal in these rescued animals, demonstrating that the Wnt/MAPK machinery is capable of blocking the repressive function of transgenic mgPOP-1 in E. The failure of the transgene to rescue the pop-1(−) mutants to viability is expected since mgPOP-1(+) is supplied only in the EMS lineage, while POP-1 is also required in many other lineages (Lin et al., 1998). We conclude that zygotically expressed POP-1 can recapitulate an asymmetric pattern sufficient to restore MS fate and that mgPOP-1 is a reliable in vivo marker for functional POP-1.

POP-1 Asymmetry between A/P Sisters Arises from Differential Nucleocytoplasmic Distribution

The finding that mgPOP-1 provides pop-1(+) rescuing activity allowed us to address several questions regarding reiterated POP-1 nuclear asymmetry: first, whether this asymmetry reflects genuine changes in the amount of protein (Lin et al., 1995, 1998); second, whether this asymmetry results from differential stability, synthesis, or nuclear transport (Rocheleau et al., 1999; Thorpe et al., 2000), and third, how POP-1 levels change dynamically in response to a Wnt/MAPK signal following an asymmetric cell division.

We found that mgPOP-1 recapitulates the asymmetric nuclear levels in sister cells of A/P cell divisions seen by immunodetection of the protein (Lin et al., 1995, 1998). mgPOP-1 is present at higher levels in anterior daughters of A/P divisions at several sequential stages in the EMS lineage even when the transgene mRNA is no longer detectable (see below; Figs. 3A–3C; and Table 1). Quantification of the mid-interphase pixel intensities between A/P nuclei in multiple lineages demonstrated that the signal difference is approximately twofold (see Materials and Methods). As seen with immunostaining of endogenous POP-1, β-catenin/WRM-1 and other Wnt/MAPK components are required for this asymmetry in nuclear mgPOP-1 levels (Fig. 3D and Table 1; Thorpe et al., 1997; Rocheleau et al., 1997; Lin et al., 1998). Interestingly, we observed symmetric expression of mgPOP-1 in a lit-1(t1534) strain, which nonetheless generally produces endoderm (Rocheleau et al., 1999). This result was confirmed with anti-POP-1 immunostaining of t1534 embryos (R.L., unpublished observations), suggesting that POP-1 asymmetry can be uncoupled from endoderm specification (see Discussion). Depletion of the CBP/p300 homolog CBP-1, or the histone deacetylase HDA-1 two maternal proteins that influence activation of end-1, -3, had no effect on mgPOP-1 asymmetry (Calvo et al., 2001). These observations reveal that the reiterated POP-1 asymmetry observed between A/P sister cells reflects bona fide differences in nuclear protein levels, rather than differences in accessibility of an immunoprobe.

Given the robust signal detected from mgPOP-1 (expressed at least 10-fold greater than endogenous POP-1, as assessed by immunostaining of mgPOP-1 with anti-POP-1 sera; see Materials and Methods), we were able to ask whether the reduced nuclear POP-1 levels in posterior daughter cells might be explained by differences in protein stability or nuclear transport. In all embryos, we observe a low level of cytoplasmic mgPOP-1. Close examination of signal intensities from confocal microscopic images revealed a slight increase in the level of cytoplasmic signal in E, MSp, and Ep than in their anterior sisters (e.g., apparent in the E cell shown in Fig. 3B). When the signal intensities are adjusted for differences in volume between the nucleus and cytoplasm, we find that there is sufficient mgPOP-1 present in the posterior cytoplasm to account for the A/P nuclear differences between sister cells (Fig. 4); i.e., both anterior and posterior sister cells contain similar total amounts of mgPOP-1. Thus, the Wnt/MAPK pathway induces a change in the nucleus to cytoplasm distribution of POP-1, but apparently without significant degradation in either intracellular compartment.

mgPOP-1 made it possible to evaluate the dynamics of POP-1 asymmetry and thereby assess when the Wnt/MAPK signal effects this change in nuclear POP-1 levels. We followed changes in mgPOP-1 expression and localization in developing embryos beginning at the 16-cell stage, when the MS and E daughters are well into interphase. At this stage, med-1 transcripts are undetectable by the sensitive method of RT-PCR, and mgpop-1 transgene transcripts are no longer detectable by in situ hybridization, indicating that any changes in mgPOP-1 signal are independent of new synthesis of the protein (Maduro et al., 2001; and data not shown). A representative series of time-lapse images is shown in Figs. 3I–3P. The onset of mitosis was apparent from the loss of a distinct nuclear envelope as seen by Nomarski microscopy, and by comparison with similar time-lapse recordings of a pie-1::GFP::HistoneH2B strain, which allows visualization of chromatin compaction (Pravis et al., 2000). Throughout the cell cycle, low but significant levels of signal are visible in the cytoplasm. Striking nuclear A/P asymmetry is apparent almost immediately after cytokinesis, i.e., within seconds after the start of interphase (e.g., MS4 in Fig. 3L). Unexpectedly, the
mgPOP-1 levels in anterior sisters decrease at the end of interphase, such that A/P asymmetry is nearly undetectable immediately prior to mitosis (compare Ea and Ep in Fig. 3N). This observation underscores the benefits of the mgPOP-1 marker for assessing the dynamic behavior of the protein: the report that 30% of embryos show equivalent levels of immunoreactive POP-1 in the E and MS nuclei (Lin et al., 1995) is now likely explained by our finding that the amount of nuclear POP-1 in the anterior nucleus diminishes late in the cell cycle. In mitotic cells, POP-1 protein is not detectable by immunostaining (Lin et al., 1995); however, we found that while nuclear mgPOP-1 disappears during mitosis, the substantial cytoplasmic fluorescence increases significantly (e.g., MS daughters in Fig. 3K). A/P differences in the cytoplasmic signal are not apparent during mitosis, further strengthening the notion that the total (nucleus + cytoplasm) amount of POP-1 is similar between sister cells. Cytoplasmic signal returns to premitotic levels at telophase, when the nuclear signal reappears (MS in Fig. 3L). We conclude that POP-1 asymmetry is established very rapidly and is the result of nucleocytoplasmic redistribution of POP-1 protein.

The β-Catenin Binding Domain and HMG Box of POP-1 Are Dispensable for Asymmetry

We identified the broad structural requirements that allow POP-1 to respond to Wnt/MAPK signaling and shift its nucleocytoplasmic localization. POP-1 contains two features conserved with vertebrate TCF/LEF proteins: a centrally located DNA-binding HMG box, which shows the highest conservation (54% identity), and an N-terminal β-catenin interaction domain (Fig. 5A; Clevers and van de Wetering, 1997; Korswagen et al., 2000). Of the three β-catenins in C. elegans, WRM-1, BAR-1, and HMP-2, only BAR-1 shows an interaction with POP-1 (Korswagen et al., 2000). In analogy to the vertebrate LEF/TCF proteins, the first 44 amino acids of POP-1 are required for this interaction with BAR-1, suggesting that POP-1 is capable of a canonical β-catenin interaction (Korswagen et al., 2000). We found that a form of mgPOP-1 lacking this amino-terminal domain exhibits asymmetric nuclear POP-1 that is indistinguishable from wild-type mgPOP-1 (Fig. 5B; and data not shown). This transgene is able to restore MS fate in a pop-1 mutant, demonstrating that the β-catenin interaction domain is dispensable for the endoderm-repressing function of POP-1. This is consistent with our observation that bar-1(RNAi) embryos do not display defects in pop-1 asymmetry and with the report that a putative bar-1 null mutant does not display defects in MS specification (Table 1; Eisenmann et al., 1998). As larger segments of POP-1 are deleted, the amount of nuclear mgPOP-1 signal becomes reduced in favor of increased cytoplasmic localization, making such fusions less informative (Fig. 5B). However, while a form of the protein lacking the HMG box is no longer able to rescue MS fate, both this truncation and one

FIG. 2. Rescue of pop-1(zu189) by mgPOP-1. (A) Diagram of the mgPOP-1 transgene pM414. (B) Arrested pop-1(zu189) mutant embryo showing abnormally small pharynx (thin dotted line) and excess intestine (thick dotted line). The anterior end of the pharynx, to which the buccal cavity would be attached in wild type, is indicated with an asterisk (*). (C) pop-1(zu189) mutant embryo carrying the mgpop-1 transgene (integrant wIs117). This animal has elongated to approximately three times the length of the eggshell and contains a complete pharynx and normal intestine. The pharynx grinder, which is characteristic of posterior (MS-derived) pharynx, is indicated with an arrow. Elongation, as in this embryo, was observed in approximately 20% of rescued embryos; a small portion of these hatch to produce developmentally arrested L1 larvae. Anterior is to the left. A C. elegans embryo is approximately 50 μm in length.
FIG. 3. mgPOP-1 expression and POP-1 immunostaining. (A–D) Confocal micrograph projections of mgPOP-1 expression in living embryos. (E–H) Single focal plane micrographs of a fixed embryo stained for endogenous POP-1. (A, B) mgPOP-1 levels are higher in MS than in E. Note the punctate appearance of signal in MS. A slightly elevated level of signal is visible in the E cytoplasm as compared to the MS cytoplasm. In (B), the contrast of the image has been digitally enhanced, and the nuclear signal has been deleted, to accentuate this difference. (C) mgPOP-1 levels are higher in MSa and Ea (arrowheads). (D) High mgPOP-1 levels and puncta appear in both A/P sister nuclei in a wrm-1(RNAi) embryo (see Table 1). (E–H) A 28-cell-stage embryo stained for endogenous POP-1. Immunostaining shows subnuclear coalescence of signal (arrow), similar to that seen with mgPOP-1 in living embryos. (H) Image from (E) pseudocolored by pixel value to permit discrimination of small level differences by color, as shown by the legend below the montage. Note presence of puncta (red foci). (I–P) Time-lapse sequence of a mgPOP-1-expressing embryo. Time in minutes is indicated for each panel, with t = 0 arbitrarily set for (A). Images are pseudocolored as in (H). A digital movie version of this time lapse series is available at http://www.idealibrary.com. (I) A 16-cell-stage embryo with the MS daughters in mid-interphase. Note the presence of bright puncta (red). (J) Immediately before mitosis, nuclear levels in MSa are reduced. (K) Nuclear signal disappears during mitosis of MSa and MSp. (The image stack was acquired just before and during mitosis, resulting in the inclusion of a focal plane with nuclear signal.) (L) Nuclear A/P differences are visible immediately after formation of MS granddaughter nuclei. (This reduction in anterior sisters is more striking in H.) (M) As interphase progresses, the anterior signal becomes more intense. Puncta begin to coalesce (red). (N) In MSa and MSp, puncta coalesce into discrete structures (red). In contrast, the nuclear levels in Ea, which have been decreasing steadily during interphase, appear similar to the levels in Ep just prior to mitosis. Note that the E daughter nuclei have ingressed into the interior of the embryo, marking the onset of gastrulation. (O) Prior to mitosis of the MS granddaughters, the nuclear levels begin to drop in MSaa and MSpa. Some weak asymmetry is visible in the four E granddaughters (outlined), which are formed from a cleavage oriented along the left-right, not A/P axis. (P) By mid-interphase, the levels in the E granddaughters are similar (outlined). High levels and puncta are visible in the MSa A/P sisters. (Q) Time-lapse series showing formation of mgPOP-1 puncta in an MSpa nucleus. Images from a single focal plane were acquired every 60 s starting immediately after the MSpa nucleus reformed, and ending shortly before prophase. Images are pseudocolored as in (H). The MSpa nucleus is approximately 5 μm in diameter. In (A–P), the eggshell has been indicated with a dotted white line. Sister nuclei are joined with a yellow line in some images. Anterior is to the left and dorsal is up.
TABLE 1
Relative GFP Levels of mgPOP-1 in Various Mutant Backgrounds

<table>
<thead>
<tr>
<th>Genotype Gene product</th>
<th>EMS lineage phenotypea</th>
<th>E/M S</th>
<th>Ea/Ep</th>
<th>M Sa/M Sp</th>
<th>Exl/Exr</th>
<th>M Sxa/M Sxp</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild type</td>
<td>CBP/p300 homolog</td>
<td>no endoderm (Shi and Mello, 1998)</td>
<td>A > P</td>
<td>A > P</td>
<td>A > P</td>
<td>A = P</td>
</tr>
<tr>
<td>hda-1(RNAi)</td>
<td>histone deacetylase</td>
<td>embryonic arrest (Shi and Mello, 1998)</td>
<td>A > P</td>
<td>A > P</td>
<td>A > P</td>
<td>A = P</td>
</tr>
<tr>
<td>pop-1(zu189)</td>
<td>TCF/LEF</td>
<td>MS → E (Lin et al., 1995)</td>
<td>A > P</td>
<td>A > P</td>
<td>A > P</td>
<td>A = P</td>
</tr>
<tr>
<td>apr-1(RNAi)</td>
<td>APC-related</td>
<td>26% no endoderm (Rocheleau et al., 1997)</td>
<td>A = Pb</td>
<td>A = Pb</td>
<td>A = Pd</td>
<td>A = Pd</td>
</tr>
<tr>
<td>apr-1(RNAi); bar-1(RNAi); mom-2(RNAi)</td>
<td>Wnt (mom-2)</td>
<td>100% no endoderm (Rocheleau et al., 1997)</td>
<td>A = P</td>
<td>A = P</td>
<td>A = P</td>
<td>A = P</td>
</tr>
<tr>
<td>bar-1(RNAi)</td>
<td>β-Catenin</td>
<td>none (Eisenmann et al., 1998)</td>
<td>A > P</td>
<td>A > P</td>
<td>A > P</td>
<td>A = P</td>
</tr>
<tr>
<td>lit-1(RNAi)</td>
<td>Nemo-like kinase</td>
<td>E → MS fate change (Rocheleau et al., 1999; Meneghini et al., 1999)</td>
<td>A = P</td>
<td>A = P</td>
<td>A = P</td>
<td>A = P</td>
</tr>
<tr>
<td>lit-1t1512°C [15°C]</td>
<td>no phenotype (Kaletta et al., 1997)</td>
<td>A > P</td>
<td>A > P</td>
<td>A > P</td>
<td>A = P</td>
<td>A > P</td>
</tr>
<tr>
<td>lit-1t1512°C [25°C]</td>
<td>E → MS (Kaletta et al., 1997)</td>
<td>A = P</td>
</tr>
<tr>
<td>wrm-1(RNAi)</td>
<td>β-Catenin</td>
<td>E → MS (Rocheleau et al., 1997; Thorpe et al., 1997)</td>
<td>A = P</td>
<td>A = P</td>
<td>A = P</td>
<td>A = P</td>
</tr>
</tbody>
</table>

Note. A > P, anterior nuclei showed higher levels of signal than posterior nuclei; A = P, nuclear levels were similar; p → a, posterior to anterior; underlined results indicate differences from wild type.
a Phenotypes are described for E and M S only. Unless otherwise noted, phenotypes described are 100% penetrant. In the presence of the mgPOP-1 transgene, all mutations or RNAi produced indistinguishable phenotypes from those previously reported.
b Relative levels were observed during mid-interphase.
c The E daughters in cbp-1(RNAi) embryos divide in an anterior–posterior direction on the ventral surface of the embryo (Shi and Mello, 1998).
d Levels of nuclear signal were greatly reduced in apr-1(RNAi) embryos.
e These embryos were also homozygous for unc-32(e189).

lacking the entire C terminus, including the HMG box, still show nucleocytoplasmic asymmetry. Collectively, these results suggest that the β-catenin domain, HMG box, and the C terminus of the protein are not required for regulation of this asymmetric behavior; hence, the 124-amino-acid region between the two domains may contain a critical A/P regulatory domain (see Discussion).

POP-1 Undergoes Intranuclear Redistribution in Unsignaled Sister Cells

The finding that overexpressed POP-1 supports normal embryonic development suggests that POP-1 may be qualitatively different in anterior and posterior cells, i.e., that it is not the amount of POP-1 in posterior cells per se that inactivates its repressor function, but rather an alteration in the protein. Observations of the dynamics of mgPOP-1 behavior provided additional evidence for such qualitative differences in POP-1 in anterior and posterior sisters. We found that mgPOP-1 forms prominent puncta specifically in the nuclei of anterior (unsignaled), but never in posterior, sisters (e.g., Fig. 3A). These structures, which do not coincide with nucleoli, are observed in all anterior nuclei of A/P sisters, even at the E⁵ stage, when the levels of mgPOP-1 per nucleus have been significantly diluted. Thus, the inability

![FIG. 4. Quantification of GFP levels for two sister cells expressing mgPOP-1. The histogram plots the number of pixels of a particular signal intensity against intensity value for the sister pair MSa/p. The average nuclear pixel intensities of MSa and MSp give an A:P ratio of ~1.84:1, while the cytoplasmic levels give an A:P ratio of ~0.68:1. The A/P differences in both cases are statistically significant (P < 10⁻⁴). Given the larger relative size of the cytoplasm, the data suggest that the lower nuclear signal in MSp can be accounted for by the increase in cytoplasmic signal. Signal intensities were quantified by using ImageTool v2.00 (University of Texas Health Science Center, San Antonio, TX) by enclosing areas of interest from confocal micrograph projections. Quantification from individual focal planes, rather than projected stacks, yielded similar results. Average background autofluorescence was subtracted from each data set.](Image318x234 to 532x357)
to detect these structures in nuclei of posterior cells is not simply attributable to the twofold lower nuclear signal compared with that in their sisters. Moreover, these structures are likely to reflect a bona fide property of POP-1 in a Wnt-unmodulated state, rather than a feature of the mgPOP-1 construct per se: similar puncta are also observed with MYC epitope-tagged POP-1 and by immunostaining of endogenous POP-1 in wild-type embryos (Figs. 3E–3H; and data not shown) but are not observed with a similarly overexpressed GFP::MED-1 transgene (mgMED-1). Time-lapse studies reveal that these anterior-specific puncta undergo dynamic changes during interphase. They are initially visible as many small speckles in each nucleus, which progressively coalesce into larger structures by mid-interphase (see time series in Fig. 3Q) and condense to as few as two large domains by late interphase. Thus, intracellular and intranuclear POP-1 distributes very differently in Wnt/MAPK-signaled and unsignaled cells, further substantiating the notion that the protein is qualitatively different in anterior and posterior sisters.

We investigated the requirements for the mgPOP-1 anterior-specific puncta. In Drosophila, the CBP/p300 homolog DcBP is known to antagonize Wnt/β-catenin signaling by lowering the affinity of the POP-1 homolog dTCF for Armadillo/β-catenin through acetylation of dTCF (Waltzer and Bienz, 1998). Depletion of cbp-1, a CBP/p300 homolog that is required for end-1, -3 activation (Calvo et al., 2001), had no effect on the appearance of mgPOP-1 asymmetry or puncta. In Xenopus, the C-terminal binding protein (CtBP) binds to XTcf-4 and functions as a corepressor (Brannon et al., 1999); we did not observe any change in mgPOP-1 in embryos in which the C. elegans CtBP was depleted by RNAi (not shown). PSA-4, a SWI/SNF component homolog, is required for LIN-44/Wnt-regulated asymmetric division of the postembryonic T cell (Herman et al., 1995, 2001; Sawa et al., 2000). Although psa-4(RNAi) results in embryonic lethality (consistent with mutation data; Sawa et al., 2000), we observed no effect on mgPOP-1 distribution other than delayed expression (data not shown). Histone acetylation is a marker for broad chromatin domains (Turner et al., 1992; Forsberg and Brresnick, 2001). Staining with antisera to various histone H4 acetylation states (see Materials and Methods) failed to reveal enrichment of specific acetylation states with the mgPOP-1 puncta. However, elimination of Wnt/MAPK signaling (i.e., by elimination of WRM-1/β-catenin; not shown) results in the appearance of puncta in

FIG. 5. POP-1 structure and in vivo properties of POP-1 domains. (A) Conserved structural features of POP-1. The amino-terminal 44 amino acids are required for interaction with the β-catenin BAR-1 (Korswagen et al., 2000). The central HMG box shares 77% similarity with vertebrate HMG boxes. Two extended regions, which include the β-catenin interaction and HMG box regions, share similarity with Drosophila dTCF/Pangolin (46 and 67% similarity, respectively). An extended region shares weak similarity (48% similarity with several gaps) to the Groucho-related gene (Grg) interaction domain of XTcf-3 (Brantjes et al., 2001). (B) Expression of altered POP-1 transgenes and rescue of pop-1(zu189) mutants. Plasmid names, diagrams of GFP::POP-1 fusions, and amino acid positions at protein fusion junctions are shown. Expression was assayed in at least two independent lines in each case. Abbreviations: nucl., nuclear levels; cyto., cytoplasmic levels; n/a., not applicable; nd, not determined.
FIG. 6. Interactions of mgPOP-1 and mgMED-1 with the end-3 promoter. Confocal micrographs show anti-GFP (left column), anti-myc (middle column), and merged images (right column) in fixed embryos expressing either mgPOP-1 or mgMED-1, and an extrachromosomal array carrying the end-3 target. The end-3 array also carries multimeric lacO sequences, which were detected by their interaction with myc-tagged Lacl protein (Belmont and Straight, 1998). Similar results were obtained with an end-1 target array (not shown). (A–F) Colocalization of mgPOP-1 with the end-3 array is observed in the anterior daughters MS, MSa, and Ea (yellow arrowheads) but not the posterior daughters E, Ep, and MSp (blue arrowheads). (G–I) In a wrm-1(RNAi) background, mgPOP-1 colocalizes with the end-3 array in both daughters of an A/P division, such as in E and MS shown here (yellow arrowheads), and in both daughters of E and MS (not shown). (J–L) While the mgPOP-1 repressor localizes to the end-3 promoter in anterior nuclei only, the mgMED-1 activator interacts with the end-3 promoter in both anterior and posterior daughters (yellow arrowheads). Similar MED-1 foci have also been observed with control arrays containing end-1 or end-3 promoter sequences, independent of transgene marker DNA or the lac/lacO plasmids, and also in MS and E in living embryos (data not shown). We interpret these results to mean that POP-1 and MED-1 can both interact with the end-3 promoter, and that this double interaction results in repression of end-3 in MS. Anterior is to the left, and sister nuclei are connected by a line.
posterior sister nuclei. Thus, the Wnt/MAPK abolishes the formation of these intranuclear domains presumably by altering POP-1.

The end-1, -3 Genes Are in Vivo Targets of POP-1 in MS

Although MED-1 is a potent activator of end-1, -3 in the E lineage (Maduro et al., 2001), its presence in the MS lineage does not result in end transgene activation, presumably because POP-1 in its repressive state either directly or indirectly blocks MED-1 activity. We investigated the possible direct interaction of POP-1 with end-1, -3 in early embryos by examining their in vivo interactions in whole animals (Carmi et al., 1998; Fukushige et al., 1999; Materials and Methods). The multi-copy nature of C. elegans transgenes allows detection of such protein–DNA interactions owing to the high copy number of target sequences present in extrachromosomal transgenic arrays. Transgenic extrachromosomal arrays carrying either the end-1 or end-3 promoters were used to probe association with mgPOP-1. As anticipated by the requirement for POP-1 in repression of endoderm fate in MS, but not E, we observed interaction of mgPOP-1 with end-1 and end-3 specifically in the MS blastomere, as evidenced by an intranuclear spot of immunoreactive GFP (from mgPOP-1) corresponding to the location of the end-bearing array (Figs. 6A–6C). While the failure to observe an interaction in E might be attributable to the approximately twofold lower nuclear level of mgPOP-1 in E vs MS (see below), such a difference is unlikely to preclude detection of a subnuclear spot in which the signal has been concentrated. mgPOP-1 did not associate with arrays containing control genes, including the el-2 promoter (a target of END-1, -3), or the array expressing mgPOP-1 itself (data not shown). The end-1 and end-3 promoters contain numerous (A/T)(A/T)CAAAG TCF-1 consensus sites (Oosterwegel et al., 1991; J. Kasimir, M.F.M. and J.H.R., unpublished observations), and POP-1 can bind an optimized TCF-1 binding site in cultured cells and in vitro (Korswagen et al., 2000). These observations show that end-1 and end-3 are direct targets of POP-1 in MS.

We further observed that mgPOP-1 associates with the end arrays in MSa and Ea, the anterior daughters of MS and E (Figs. 6D–6F). This was somewhat unexpected since the ends are not expressed in the MSp lineage (in which no interaction is detected) and there is no apparent repression in the Ea lineage. These data show that an A/P asymmetric POP-1–target interaction can occur reiteratively, suggesting that a mechanism exists to restrict the output of this interaction to the appropriate stage within a lineage (see Discussion).

To examine the relevance of the Wnt/MAPK signaling pathway on the mgPOP-1/end interaction, we analyzed embryos depleted for WRM-1/β-catenin, which is essential for POP-1-dependent repression of endoderm fate (Rocheleau et al., 1997; Thorpe et al., 1997). In such embryos, mgPOP-1 was found to associate with the end-bearing arrays in both MS and E, as well as in their daughters (Figs. 5G–5I; and data not shown). Thus, Wnt/MAPK signaling inhibits the interaction of mgPOP-1 with end-1, -3 in the nuclei of posterior sisters, explaining the mechanism by which POP-1-mediated repression of the end genes, and endoderm fate, occurs in the E cell.

POP-1 in Its Repressive State Prevents Activation by end-3-Bound MED-1 in MS

How does POP-1 repress transcriptional activation of end-1, -3 in the MS lineage? In pop-1(−/−) embryos, MS expresses end-1, -3 and adopts an E fate in a med-dependent manner (Maduro et al., 2001; Calvo et al., 2001; J. Zhu, M.F.M. and J.H.R., unpublished observations). MED-1 (and its homolog MED-2) is a GATA factor, and there are several GATA recognition sequences in the end-1 and end-3 promoters, suggesting that MED-1/2 may activate end-1, -3 directly (consensus HGATAR; Lowry and Atchley, 2000; J. Kasimir, M.F.M. and J.H.R., unpublished observations). Given that POP-1 apparently binds end-1, -3 when functioning as a repressor, one plausible mechanism might be that it precludes binding of MED-1, -2 in MS. To examine this possibility, we tested the ability of GFP-tagged MED-1, expressed under its own promoter (mgMED-1) to bind end-1 or end-3 transgenes (see Materials and Methods). The GFP tag did not discernibly alter MED-1 function, as the same GFP::MED-1 chimera driven by a heat shock promoter was able to trans-activate end-3 expression and generate ectopic endoderm, similar to untagged MED-1 (Maduro et al., 2001; data not shown). We observed that mgMED-1 produces intranuclear spots in all early EMS descendants when end-1 or end-3 were present on an extrachromosomal array (Fig. 6J), but not in embryos lacking such an array, indicating that mgMED-1 binds to end-1 and end-3 in both the MS and E lineages, in both anterior and posterior nuclei. The nuclear spots seen in these experiments represent interaction of mgMED-1 with the end-containing array (Figs. 6K and 6L). We conclude that GFP::MED-1 interacts with the end-1 and end-3 promoters in both the E and MS lineages in vivo, indicating that POP-1 must repress activation of the ends by a mechanism that does not preclude simultaneous binding of the MEDs. Although the assay used generates subnuclear spots, we do not know whether the puncta exhibited by anterior-specific mgPOP-1 in living embryos (in the absence of end target arrays) represent similar association of POP-1 with repressive targets.

DISCUSSION

We report the first observation in an intact embryo of the dynamic behavior of a Lef factor, and its interactions with its target, as it responds to Wnt signaling. The major advances from these studies are: (1) “POP-1 asymmetry” (Lin et al., 1998) is the result of the rapid nucleocytoplasmic redistribution of POP-1 by a Wnt/MAPK-dependent mecha-
nism occurring immediately after a cell is born, rather than differential stability, synthesis, or immunoreactivity. (2) While an internal 124-amino-acid segment is apparently required for the asymmetric nucleocytoplasmic distribution of POP-1, the amino-terminal β-catenin interaction domain, the HMG box DNA-binding domain, and the C terminus are dispensable for this event. (3) Based on its in vivo behavior, POP-1 appears to be qualitatively different in Wnt/MAPK-signalized and unsignalized cells. It undergoes an intranuclear rearrangement in the latter, progressively coalescing into subnuclear domains. (4) The end-1 and end-3 genes are the first direct POP-1 targets identified and the apparent qualitative difference in POP-1 is correlated with its ability to bind these targets in unsignalized cells. (5) When it functions as a repressor, both POP-1, and an activator, MED-1, can bind to the end-1 and -3 targets; thus, POP-1 repressor does not preclude binding of an activator, but instead functions at a post-binding step to block trans-activation. This dynamic behavior of POP-1 may reflect a global mechanism by which it functions as a reiterative developmental switch that generates nonequivalent sister cells throughout C. elegans development.

POP-1 Asymmetry and Endoderm Specification

The TCF/LEF protein POP-1 is the terminal regulator of a recursive Wnt/MAPK-dependent switch that operates throughout C. elegans development in many asymmetric A/P divisions (Lin et al., 1998). We find that mgPOP-1 can interact with extrachromosomal arrays containing the end promoters in the nucleus of MS, the blastomere in which POP-1 function is required to prevent end-1, -3 activation and endoderm specification (Fig. 7A). In the E nucleus, this interaction is not detectable. This pattern of POP-1/end-3 interaction is recapitulated in the E and MS daughter cells, such that POP-1 interacts with the end promoters in MSa and Ea. These latter interactions appear to be gratuitous, as POP-1 function is not required to prevent inappropriate activation of end-1, -3 in these cells; however, differential POP-1 activity in Ea and Ep is apparently required to pattern expression of genes in the later endoderm (Schroeder and McGhee, 1998). Our results therefore support the notion that endoderm specification results from the combination of direct positive input by the lineage-specific factors MED-1, -2 (in MS and E) and direct negative input by the POP-1 switching system (in MS) (Fig. 7A). The P2–EMS interaction results in a change in POP-1, which prevents the interaction between POP-1 and end-1, -3 in the E nucleus, permitting MED-1, -2 to activate end-1, -3 and specify an E fate.

Why, then, are nuclear levels of POP-1 reduced by Wnt/MAPK signaling? WRM-1/β-catenin and LIT-1/NLK are both required for endodermal fate and POP-1 asymmetry (Rocheleau et al., 1997; Thorpe et al., 1997; Shin et al., 1999). The WRM-1/LIT-1 kinase can phosphorylate POP-1, which has been proposed to cause POP-1 degradation (Shin et al., 1999; Rocheleau et al., 1999). Based on several observations, degradation appears not to be the mechanism for generating POP-1 asymmetry. First, when a posterior cell divides, it produces an anterior daughter that expresses similar levels of mgPOP-1 as the anterior daughter of its sister. This occurs even in the absence of new protein synthesis, as transcripts for mgpop-1 are no longer detectable by the 16-cell stage, but asymmetry recurs for many cell generations thereafter. A/P sister cells must therefore contribute a similar amount of total POP-1 protein to each daughter. This is consistent with our observation that the elevated cytoplasmic level of mgPOP-1 is similar between mitotic A/P sisters. Second, measurement of GFP signals in the cytoplasms of E, MSa, and Ep revealed elevated levels that can account for the A/P nuclear mgPOP-1 differences. Our analysis of mgPOP-1 dynamics, therefore, indicates that Wnt/MAPK signaling causes POP-1 asymmetry via nucleocytoplasmic redistribution. This is consistent with previous findings in cultured cells, in which a slight increase in the proportion of cells with cytoplasmic myc-tagged POP-1 was observed when myc-POP-1 was coexpressed with WRM-1/LIT-1 (Rocheleau et al., 1999).

The initial observation that POP-1 levels are lower in E than in MS, coupled with the loss of asymmetry and E specification seen in Wnt/MAPK mutants, led to the proposal that low levels of POP-1 are a requirement for E fate (Lin et al., 1995, 1998; Rocheleau et al., 1997, 1999; Thorpe et al., 1997). However, our results indicate that Wnt/MAPK-induced relief of repression by POP-1 is not the result of down-regulation of POP-1 amounts per se, but rather appears to be the result of a qualitative change in POP-1, which alters its activity. We have found that functional mgPOP-1 or myc-tagged POP-1 can be stably expressed at levels ~10-fold higher than endogenous POP-1 in the early C. elegans embryo without causing developmental defects. Comparison of anti-POP-1 signal in the mgPOP-1 strain has shown that there is at least twice as much mgPOP-1 in posterior EMS descendants than in anterior cells in other lineages. Similarly, we have found that overexpression of POP-1 from a heat-shock promoter-driven construct does not result in repression of endoderm development (M.F.M. and J.H.R., unpublished observation). Despite this excess of POP-1, both asymmetry and correct specification of endoderm still occur in the presence of these transgenes. Moreover, we have found that the unusual lit-1(t1534) mutant in which POP-1 asymmetry is eliminated nonetheless produces endoderm. These data suggest that POP-1 asymmetry can be uncoupled from its function as a repressor. Therefore, absolute POP-1 levels are not the critical element of POP-1 function in MS/E specification. We propose that the qualitative difference in POP-1 between MS and E, reflected in the interaction with the end-1, -3 promoters, is the crucial parameter of POP-1 asymmetry that regulates E specification. It is not clear whether this is true for postembryonic A/P asymmetries that require POP-1 function. For example, expression of POP-1 under heat shock control in larval males causes a spicule defect similar to loss-of-function of the HMG-1/2
homolog SON-1 (Jiang and Sternberg, 2000). In addition, while expression of POP-1 in hermaphrodite larvae caused no effect on the asymmetric division of the T neuroblast, migration defects in the daughters of the QL neuroblast (similar to Wnt pathway mutants) were seen (Herman, 2001). These observations suggest that absolute POP-1 levels may be important for some, but not all, postembryonic A/P asymmetries.

That there is a marked qualitative difference in POP-1 between A/P sisters is further evidenced by our finding that
mgPOP-1 (and immunoreactive POP-1) undergoes a striking intranuclear relocalization during early interphase of a newly formed anterior (unsignaled) cell that is never seen in posterior cells. This progressive coalescence results in association of most of the nuclear protein with as few as two domains within all anterior sisters of A/P divisions. The presence of these intranuclear regions of POP-1 localization in unsignaled cells correlates with the repressive activity of POP-1, its higher nuclear: cytoplasmic distribution, and its ability to associate with the end-1, -3 target genes. While it is unclear whether these events are all causally related, these observations raise the possibility that POP-1 in its repressive form may associate with, or even promote, the formation of extended nuclear domains involved in transcriptional repression. In this regard, it is of interest that, in both C. elegans and a related nematode, C. briggsae, two of its targets, end-1 and end-3, are in close proximity, though not adjacent in the genome, possibly suggesting a mechanism for coordinate regulation. Whatever the precise mechanism of repression that POP-1 uses, it does not appear to act by excluding binding of activators, since the MED-1 activator of end-1, -3 is bound even in cells (MS lineage) in which these genes are fully repressed.

POP-1 Repressive Function and Asymmetric Cell Division

Why has a similar reiterative role for TCF/LEF proteins in asymmetric cell division not been observed in other systems? One possibility is that this is a unique adaptation in C. elegans, arising from the rapid cell cycles that occur in early embryogenesis. We have found that expression of GFP-tagged dTcf (i.e., the Drosophila TCF homologue, also known as Pangolin) in the EMS lineage of C. elegans results in weak nuclear localization which is A/P symmetric (our unpublished results), suggesting that the Drosophila protein lacks structural elements associated with POP-1 asymmetry. Recently, it has been demonstrated that TCF/LEF proteins can act as repressors in the absence of signaling (Kim et al., 2000; Merrill et al., 2001). Unlike bipartite β-catenin-TCF activators, repressive TCFs function in the absence of β-catenin: truncated TCFs lacking the conserved amineterminal β-catenin interaction domain can still function as repressors by interacting with corepressors of the Grg (Groucho-related gene) family (Kim et al., 2000; Brantjes et al., 2001). This interaction has been mapped to a Grg domain located between the β-catenin and HMG box regions of vertebrate TCFs (Brantjes et al., 2001). POP-1 contains a region with 27% identity to a vertebrate Grg domain in this same region, and POP-1 associates with the Groucho-like protein UNC-37, which is proposed to act in MS to repress endoderm fate (Fig. 5A; Roose et al., 1998; Brantjes et al., 2001; Pukrop et al., 2001; Calvo et al., 2001). Consistent with a conserved mechanism for POP-1/TCF repressive function, we have found that POP-1 lacking the β-catenin interaction domain can rescue MS fate in pop-1 mutants. Moreover, all deleted mgPOP-1 constructs that retain the putative Grg domain still demonstrate some nuclear asymmetry. An intriguing possibility, therefore, is that both asymmetry and repressive function of POP-1 are regulated via this domain.

Temporal Restriction of Wnt/MAPK Responsiveness

The recursive nature of the POP-1 anterior–posterior switching system suggests that activation of genes responsive to this mechanism must be restricted in their potential to respond, such that POP-1 activity influences transcription only at the time the A/P decision is made (Lin et al., 1998). We have observed the interaction of mgPOP-1 with end-1, -3 in MS at the time the E/MS decision is made, but also in the anterior daughters of MS and E, cells in which the POP-1 switching system does not contribute to end promoter activity. Thus, it may be that POP-1 can initiate a repressive state only at the time that transcription of a gene is first established (e.g., end-3 in the E cell), but is not subsequently required to maintain this repressed state. Alternatively, the end genes may lose their responsiveness to POP-1 and MED-1, -2 after E and MS have been specified. Indeed, nuclear accumulation of end-3 transgene transcripts (evidence for active transcription; Seydoux and Fire, 1995) is restricted to the eight-cell stage (data not shown). In Xenopus, a temporal restriction of gene responsiveness is known to occur for the Wnt target genes siamois and Xnr-3, which become unresponsive to Wnt signal transduction after gastrulation (Darken and Wilson, 2001). These data suggest that a mechanism to temporally restrict target gene responsiveness downstream of Wnt signaling has been evolutionarily conserved. Whether this involves recruitment of repressors, modification of the activators, or a change in chromatin state remains to be examined.

ACKNOWLEDGMENTS

We thank Kevin Kane and Dave Pilgrim for providing access to a gamma irradiator and the laboratory facilities in which wls117 was integrated, respectively; Ralf Schnabel for sending a lit-1(t1534) strain; Tetsunari Fukushige and Jim McGhee for providing an et-2 promoter-containing plasmid; Andrew Belmont for the lacO plasmid; and Geraldine Seydoux for advice on in situ hybridization. Some of the strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the National Center for Research Resources of the National Institutes of Health. M.F.M. is a postdoctoral fellow of the Natural Sciences and Engineering Research Council of Canada (NSERC). This work was supported by a grant from March of Dimes (FY2000-659) and the NIH (HD37487) to J.H.R.

REFERENCES

