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Abstract

Markov chain Monte Carlo (MCMC) is a method of producing a correlated sample

to estimate characteristics of a target distribution. A fundamental question is how

long should the simulation be run? One method to address this issue is to run the

simulation until the width of a confidence interval for the quantity of interest is below

a user-specified value. The use of this fixed-width methods requires an estimate of

the Monte Carlo standard error (MCSE). This dissertation begins by discussing why

MCSEs are important, how they can be easily calculated in MCMC and how they can

be used to decide when to stop the simulation. The use of MCSEs is then compared

to a popular alternative in the context of multiple examples.

This dissertation continues by discussing the relevant Markov chain theory with

particular attention paid to the conditions and definitions needed to establish a

Markov chain central limit theorem. Estimating MCSEs requires estimating the as-

sociated asymptotic variance. I introduce several techniques for estimating MCSEs:

batch means, overlapping batch means, regeneration, subsampling and spectral vari-

ance estimation. Asymptotic properties useful in MCMC settings are established for

these variance estimators. Specifically, I established conditions under which the esti-

mator for the asymptotic variance in a Markov chain central limit theorem is strongly

consistent. Strong consistency ensures that confidence intervals formed will be asymp-

totically valid. In addition, I established conditions to ensure mean-square consistency

for the estimators using batch means and overlapping batch means. Mean-square con-
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sistency is useful in choosing an optimal batch size for MCMC practitioners.

Several approaches have been introduced dealing with the special case of estimat-

ing ergodic averages and their corresponding standard errors. Surprisingly, very little

attention has been given to characteristics of the target distribution that cannot be

represented as ergodic averages. To this end, I proposed use of subsampling methods

as a means for estimating the qth quantile of the posterior distribution. Finally, the

finite sample properties of subsampling are examined.
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Chapter 1

Motivation: Can We Trust the
Third Significant Figure?

Current reporting of results based on Markov chain Monte Carlo computations could

be improved. In particular, a measure of the accuracy of the resulting estimates

is rarely reported. Thus we have little ability to objectively assess the quality of

the reported estimates. We address this issue in that we discuss why Monte Carlo

standard errors are important, how they can be easily calculated in Markov chain

Monte Carlo and how they can be used to decide when to stop the simulation. We

compare their use to a popular alternative in the context of two examples.

The content of this chapter is primarily contained in Flegal et al. (2008) and

serves as an introduction to the problem of interest. The results here are expanded

and formalized in subsequent chapters.

1.1 Introduction

Hoaglin and Andrews (1975) consider the general problem of what information should

be included in publishing computation-based results. The goal of their suggestions

was “...to make it easy for the reader to make reasonable assessments of the numerical

quality of the results.” In particular, Hoaglin and Andrews suggested that it is crucial

1



2 Chapter 1. Motivation

to report some notion of the accuracy of the results and, for Monte Carlo studies this

should include estimated standard errors. However, in settings where Markov chain

Monte Carlo (MCMC) is used there is a culture of rarely reporting such information.

For example, we looked at the issues published in 2006 of Journal of the American

Statistical Association, Biometrika and Journal of the Royal Statistical Society, Series

B. In these journals we found 39 papers that used MCMC. Only 3 of them directly

addressed the Monte Carlo error in the reported estimates. Thus it is apparent that

the readers of the other papers have little ability to objectively assess the quality

of the reported estimates. We attempt to address this issue in that we discuss why

Monte Carlo standard errors are important, how they can be easily calculated in

MCMC settings and compare their use to a popular alternative.

Simply put, MCMC is a method for using a computer to generate data and subse-

quently using standard large sample statistical methods to estimate fixed, unknown

quantities of a given target distribution. (Thus, we object to calling it ‘Bayesian

Computation’.) That is, it is used to produce a point estimate of some characteristic

of a target distribution π having support X. The most common use of MCMC is to

estimate Eπg :=
∫

X
g(x)π(dx) where g is a real-valued, π-integrable function on X.

Suppose that X = {X1, X2, X3, . . . } is an aperiodic, irreducible, positive Harris

recurrent Markov chain with state space X and invariant distribution π (for definitions

see Section 2.1). In this case X is Harris ergodic. Typically, estimating Eπg is

natural since an appeal to the Ergodic Theorem implies that if Eπ|g| <∞ then, with

probability 1,

ḡn :=
1

n

n∑
i=1

g(Xi) → Eπg as n→∞.

The MCMC method entails constructing a Markov chain X satisfying the regularity

conditions described above and then simulating X for a finite number of steps, say

n, and using ḡn to estimate Eπg. The popularity of MCMC largely is due to the ease
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with which such an X can be simulated (Chen et al., 2000; Robert and Casella, 1999;

Liu, 2001).

An obvious question is when should we stop the simulation? That is, how large

should n be? Or, when is ḡn a good estimate of Eπg? In a given application we

usually have an idea about how many significant figures we want in our estimate but

how should this be assessed? Responsible statisticians and scientists want to do the

right thing but output analysis in MCMC has become a muddled area with often

conflicting advice and dubious terminology. This leaves many in a position where

they feel forced to rely on intuition, folklore and heuristics. We believe this often

leads to some poor practices: (A) Stopping the simulation too early, (B) Wasting

potentially useful samples, and, most importantly, (C) Providing no notion of the

quality of ḡn as an estimate of Eπg. In this thesis we focus on issue (C) but touch

briefly on (A) and (B).

The rest of this chapter is organized as follows. In Section 1.2 we briefly introduce

some basic concepts from the theory of Markov chains. In Section 1.3 we consider

estimating the Monte Carlo error of ḡn. Then Section 1.4 covers two methods for

stopping the simulation and compares them in a toy example. In Section 1.5 the two

methods are compared again in a realistic spatial model for a data set on wheat crop

flowering dates in North Dakota. We close with some final remarks in Section 1.6.

1.2 Markov Chain Basics

Suppose that X = {X1, X2, X3 . . . } is a Harris ergodic Markov chain with state

space X and invariant distribution π. For n ∈ N := {1, 2, 3, . . .} let P n(x, ·) be

the n-step Markov transition kernel; that is, for x ∈ X and a measurable set A,

P n(x,A) = Pr (Xn+i ∈ A | Xi = x). An extremely useful property of X is that the
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chain will converge to the invariant distribution. Specifically,

‖P n(x, ·)− π(·)‖ ↓ 0 as n→∞,

where the left-hand side is the total variation distance between P n(x, ·) and π(·).

(This is stronger than convergence in distribution.) The Markov chain X is geomet-

rically ergodic if there exists a constant 0 < t < 1 and a function M : X → R+ such

that for any x ∈ X,

‖P n(x, ·)− π(·)‖ ≤M(x) tn (1.1)

for n ∈ N. If M(x) is bounded, then X is uniformly ergodic. Thus uniform ergodicity

implies geometric ergodicity. However, as one might imagine, finding M and t directly

is often quite difficult in realistic settings.

There has been a substantial amount of effort devoted to establishing (1.1) in

MCMC settings. For example, Hobert and Geyer (1998), Johnson and Jones (2008),

Jones and Hobert (2004), Marchev and Hobert (2004), Mira and Tierney (2002),

Robert (1995), Roberts and Polson (1994), Roberts and Rosenthal (1999), Rosenthal

(1995, 1996), Roy and Hobert (2007), and Tierney (1994) examined Gibbs samplers

while Christensen et al. (2001), Douc et al. (2004), Fort and Moulines (2000), Fort

and Moulines (2003), Geyer (1999), Jarner and Hansen (2000), Jarner and Roberts

(2002), Meyn and Tweedie (1994), and Mengersen and Tweedie (1996) considered

Metropolis-Hastings algorithms.

1.3 Monte Carlo Error

A Monte Carlo approximation is not exact. The number ḡn is not the exact value of

the integral we are trying to approximate. It is off by some amount, the Monte Carlo

error, ḡn − Eπg. How large is the Monte Carlo error? Unfortunately, we can never
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know unless we know Eπg.

We don’t know the Monte Carlo error, but we can get a handle on its sampling

distribution. That is, assessing the Monte Carlo error can be accomplished by esti-

mating the variance of the asymptotic distribution of ḡn. Under regularity conditions,

the Markov chain X and function g will admit a CLT. That is,

√
n(ḡn − Eπg)

d→ N(0, σ2
g) (1.2)

as n → ∞ where σ2
g := varπ{g(X1)} + 2

∑∞
i=2 covπ{g(X1), g(Xi)}; the subscript π

means that the expectations are calculated assuming X1 ∼ π. The CLT holds for

any initial distribution when either (i) X is geometrically ergodic and Eπ|g|2+δ <∞

for some δ > 0 or (ii) X is uniformly ergodic and Eπg
2 <∞. These are not the only

sufficient conditions for a CLT but are among the most straightforward to state; the

interested reader is pointed to the summaries provided by Jones (2004) and Roberts

and Rosenthal (2004).

Given a CLT we can assess the Monte Carlo error in ḡn by estimating the variance,

σ2
g . That is, we can calculate and report an estimate of σ2

g , say σ̂2
g that will allow

us to assess the accuracy of the point estimate. There have been many techniques

introduced for estimating σ2
g ; see, among others, Bratley et al. (1987), Fishman (1996),

Geyer (1992), Glynn and Iglehart (1990), Glynn and Whitt (1991), Mykland et al.

(1995) and Roberts (1996). For example, regenerative simulation, batch means and

spectral variance estimators all can be appropriate in MCMC settings. In this chapter,

we will consider only one of the available methods, namely non-overlapping batch

means. We chose this method is because it is easy to implement and can enjoy

desirable theoretical properties. However, overlapping batch means has a reputation

of sometimes being more efficient than non-overlapping batch means (a relationship

investigated in Chapter 3).



6 Chapter 1. Motivation

1.3.1 Batch Means

In non-overlapping batch means the output is broken into blocks of equal size. Sup-

pose the algorithm is run for a total of n = ab iterations (hence a = an and b = bn

are implicit functions of n) and define

Ȳj :=
1

b

jb∑
i=(j−1)b+1

g(Xi) for j = 1, . . . , a .

The batch means estimate of σ2
g is

σ̂2
g =

b

a− 1

a∑
j=1

(Ȳj − ḡn)2 . (1.3)

Batch means is attractive because it is easy to implement (and it is available in some

software, e.g. WinBUGS) but some authors encourage caution in its use (Roberts,

1996). In particular, we believe careful use is warranted since (1.3), in general, is not

a consistent estimator of σ2
g . On the other hand, Jones et al. (2006) showed that if

the batch size and the number of batches are allowed to increase as the overall length

of the simulation increases by setting bn = bnθc and an = bn/bnc, then σ̂2
g → σ2

g with

probability 1 as n→∞. Throughout this thesis, we consider the case consistent batch

means (BM) rather than the usual fixed number of batches version. The regularity

conditions require that X be geometrically ergodic, Eπ|g|2+δ+ε < ∞ for some δ > 0

and some ε > 0 and (1 + δ/2)−1 < θ < 1; often θ = 1/2 (i.e., bn = b
√
nc and

an = bn/bnc) is a convenient choice that works well in applications. Note that the

only practical difference between BM and standard batch means is that the batch

number and size are chosen as functions of the overall run length, n.

Using BM to get an estimate of the Monte Carlo standard error (MCSE) of ḡn,

say σ̂g/
√
n, we can form an asymptotically valid confidence interval for Eπg. The
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half-width of the interval is given by

tan−1
σ̂g√
n

(1.4)

where tan−1 is an appropriate quantile from Student’s t distribution with an−1 degrees

of freedom.

1.3.2 How Many Significant Figures?

The title of the chapter contains a rhetorical question; we don’t always care about

the third significant figure. But we should care about how many significant figures

there are in our estimates. Assessing the Monte Carlo error through (1.4) gives us a

tool to do this. For example, suppose ḡn = 0.02, then there is exactly one significant

figure in the estimate, namely the “2”, but how confident are we about it? Letting hα

denote the half width given in (1.4) of a (1−α)100% interval, we would trust the one

significant figure in our estimate if 0.02 ± hα ⊆ [0.015, 0.025) since otherwise values

such as Eπg = 0.01 or Eπg = 0.03 are plausible through rounding.

More generally, we can use (1.4) to assess how many significant figures we have

in our estimates. This is illustrated in the following toy example that will be used

several times throughout the rest of this thesis.

Toy Example

Let Y1, . . . , YK be i.i.d. N(µ, λ) and let the prior for (µ, λ) be proportional to 1/
√
λ.

The posterior density is characterized by

π(µ, λ|y) ∝ λ−
K+1

2 exp

{
− 1

2λ

K∑
j=1

(yj − µ)2

}
(1.5)
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where y = (y1, . . . , yK)T . It is easy to check that this posterior is proper as long as

K ≥ 3 and we assume this throughout. Using the Gibbs sampler to make draws

from (1.5) requires the full conditional densities, f(µ|λ, y) and f(λ|µ, y), which are

as follows:

µ|λ, y ∼ N(ȳ, λ/K) ,

λ|µ, y ∼ IG

(
K − 1

2
,
(K − 1)s2 +K(ȳ − µ)2

2

)
,

where ȳ is the sample mean and (K−1)s2 =
∑

(yi− ȳ)2. (We say W ∼ IG(α, β) if its

density is proportional to w−(α+1)e−β/wI(w > 0).) Consider estimating the posterior

means of µ and λ. It is easy to prove that E(µ|y) = ȳ and E(λ|y) = (K−1)s2/(K−4)

for K > 4. Thus we do not need MCMC to estimate these quantities but we will

ignore this and use the output of a Gibbs sampler to estimate E(µ|y) and E(λ|y).

Consider the Gibbs sampler that updates λ then µ; that is, letting (λ′, µ′) denote

the current state and (λ, µ) denote the future state, the transition looks like (λ′, µ′) →

(λ, µ′) → (λ, µ). Jones and Hobert (2001) established that the associated Markov

chain is geometrically ergodic as long as K ≥ 5. If K > 10, then the moment

conditions ensuring the CLT and the regularity conditions for BM (with θ = 1/2)

hold.

Let K = 11, ȳ = 1, and (K − 1)s2 = 14 so that E(µ|y) = 1 and E(λ|y) = 2;

for the remainder of this chapter these settings will be used every time we consider

this example. Consider estimating E(µ|y) and E(λ|y) with µ̄n and λ̄n, respectively

and using BM to calculate the MCSEs for each estimate. Specifically, we will use a

95% confidence level in (1.4) to construct an interval estimate. Let the initial value

for the simulation be (λ1, µ1) = (1, 1). When we ran the Gibbs sampler for 1000

iterations we obtained λ̄1000 = 2.003 with an MCSE of 0.055 and µ̄1000 = 0.99 with

an MCSE of 0.016. Thus we would be comfortable reporting two significant figures
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for the estimates of E(λ|y) and E(µ|y), specifically 2.0 and 1.0, respectively. But

when we started from (λ1, µ1) = (100, 100) and ran Gibbs for 1000 iterations we

obtained λ̄1000 = 13.06 with an MCSE of 11.01 and µ̄1000 = 1.06 with an MCSE of

0.071. Thus we would not be comfortable with any significant figures for the estimate

of E(λ|y) but we would trust one significant figure (i.e., 1) for E(µ|y). Unless the

MCSE is calculated and reported a hypothetical reader would have no way to judge

this independently.

Remarks

1. A common concern about MCSEs is that their use may require estimating Eπg

much too precisely relative to
√

varπg. Of course, it would be a rare problem

indeed where we would know
√

varπg and not Eπg. Thus we would need to

estimate
√

varπg and calculate an MCSE (via the delta method) before we

could trust the estimate of
√

varπg to inform us about the MCSE for Eπg.

2. We are not suggesting that all MCMC-based estimates should be reported in

terms of significant figures; in fact we do not do this in the simulations that

occur later. Instead, we are strongly suggesting that an estimate of the Monte

Carlo standard error should be used to assess simulation error and reported.

Without an attached MCSE a point estimate should not be trusted.

1.4 Stopping the Simulation

In this section we consider two formal approaches to terminating the simulation. The

first is based on calculating an MCSE and is discussed in Section 1.4.1. The second

is based on the method introduced in Gelman and Rubin (1992) and is one of many

so-called convergence diagnostics (Cowles and Carlin, 1996). Our reason for choosing

the Gelman-Rubin diagnostic (GRD) is that it appears to be far and away the most
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popular method for stopping the simulation. GRD and MCSE are used to stop the

simulation in a similar manner. After n iterations either the value of the GRD or

MCSE is calculated and if it isn’t sufficiently small then we continue the simulation

until it is.

1.4.1 Fixed-Width Methods

Suppose we have an idea of how many significant figures we want in our estimate.

Another way of saying this is that we want the half-width of the interval (1.4) to be

less than some user-specified value, ε. Thus we might consider stopping the simulation

when the MCSE of ḡn is sufficiently small. This, of course, means that we may have

to check whether this criterion is met many times. It is not obvious that such a

procedure will be guaranteed to terminate the computation in a finite amount of

time or whether the resulting intervals will enjoy the desired coverage probability and

half-width. Also, we don’t want to check too early in the simulation since we will run

the risk of premature termination due to a poor estimate of the standard error.

Suppose we use BM to estimate the Monte Carlo standard error of ḡn, say σ̂g/
√
n,

and use it to form a confidence interval for Eπg. If this interval is too large then the

value of n is increased and simulation continues until the interval is sufficiently small.

Formally, the criterion is given by

tan−1
σ̂g√
n

+ p(n) ≤ ε (1.6)

where tan−1 is an appropriate quantile, p(n) = εI(n < n∗) where, n∗ > 0 is fixed,

I is the usual indicator function on Z+ and ε > 0 is the user-specified half-width.

The role of p is to ensure that the simulation is not terminated prematurely due to

a poor estimate of σ̂g. The conditions which guarantee σ̂2
g is consistent also imply

that this procedure will terminate in a finite amount of time with probability one
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and that the resulting intervals asymptotically have the desired coverage (see Glynn

and Whitt, 1992). However, the finite-sample properties of (1.4) have received less

formal investigation but simulation results suggest that the resulting intervals have

approximately the desired coverage and half-width in practice (see Flegal and Jones,

2008; Jones et al., 2006).

Remarks

1. The CLT and BM require a geometrically ergodic Markov chain. This can

be difficult to check directly in any given application. On the other hand,

considerable effort has been spent establishing (1.1) for a number of Markov

chains; see the references given at the end of Section 1.2. In our view, this is

not the obstacle that it was in the past.

2. The frequency with which (1.6) should be evaluated is an open question. Check-

ing often, say every few iterations, may substantially increase the overall com-

putational effort.

3. Consider p(n) = εI(n < n∗). The choice of n∗ is often made based on the

user’s experience with the problem at hand. However, for geometrically ergodic

Markov chains there is some theory that can give guidance on this issue (see

Jones and Hobert, 2001; Latuszynski, 2008; Rosenthal, 1995).

4. Stationarity of the Markov chain is not required for the CLT or the strong

consistency of BM. One consequence is that burn-in is not required if we can

find a reasonable starting value.

Toy Example

We consider implementation of fixed-width methods in the toy example introduced in

Section 1.3.2. We performed 1000 independent replications of the following procedure.
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Prop. Prop.
Method at Min. S.E. ≤ 1000 S.E. N S.E.
BM1 0 0 0.011 0.0033 2191 19.9
BM2 0 0 0 0 5123 33.2
GRD1 0.576 0.016 0.987 0.0036 469 4.1
GRD2 0.587 0.016 0.993 0.0026 471 4.2
GRD3 0.062 0.0076 0.363 0.015 2300 83.5
GRD4 0.01 0.0031 0.083 0.0087 5365 150.5

Table 1.1: Summary of the proportion (and standard error) of the observed estimates
which were based on the minimum number (400) of draws, less than or equal to 1000
draws, and the average total simulation effort for the toy example in Section 1.3.2.

Each replication of the Gibbs sampler was started from ȳ. Using (1.6), a replication

was terminated when the half-width of a 95% interval with p(n) = εI(n < 400) was

smaller than a prespecified cutoff, ε, for both parameters. If both standard errors were

not less than the cutoff, then the current chain length was increased by 10% before

checking again. We used two settings for the cutoff, ε = 0.06 and ε = 0.04. These

settings will be denoted BM1 and BM2, respectively.

First, consider the estimates of E(µ|y). We can see from Figures 1.1a and 1.1b that

the estimates of E(µ|y) are centered around the truth with both settings. Clearly, the

cut-off of ε = 0.04 is more stringent and yields estimates that are closer to the true

value. It should come as no surprise that the cost of this added precision is increased

computational effort; see Table 1.1. The corresponding plots for λ̄n yield the same

results and are therefore excluded.

Consider BM2. In this case, 100% of the estimates, µ̄n, of E(µ|y) and 96% of

the estimates, λ̄n, of E(λ|y) are within the specified ε = 0.04 of the truth. In every

replication the simulation was stopped when the criterion (1.6) for E(λ|y) dropped

below the cutoff. Similar results hold for the BM1 (ε = 0.06) setting.
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(a) BM1, with a cutoff of ε = 0.06.
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(c) GRD1, 2 chains and δ = 1.1.

GRD3

Estimate of Mu

Fr
eq

ue
nc

y

0.90 0.95 1.00 1.05 1.10

0
50

10
0

15
0

(d) GRD3, 2 chains and δ = 1.005.
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(e) GRD2, 4 chains and δ = 1.1.
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(f) GRD4, 4 chains and δ = 1.005.

Figure 1.1: Histograms from 1000 replications estimating E(µ|y) for the toy example
of Section 1.3.2 with BM and GRD. Simulation sample sizes are given in Table 1.1.
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1.4.2 The Gelman-Rubin Diagnostic

The Gelman-Rubin diagnostic (GRD) introduced in Gelman and Rubin (1992) and

refined by Brooks and Gelman (1998) is a popular method for assessing the output

of MCMC algorithms. It is important to note that this method is also based on a

Markov chain CLT (Gelman and Rubin, 1992, p.463) and hence does not apply more

generally than approaches based on calculating an MCSE.

GRD is based on the simulation of m independent parallel Markov chains having

invariant distribution π, each of length 2l. Thus the total simulation effort is 2lm.

Gelman and Rubin (1992) suggest that the first l simulations should be discarded

and inference based on the last l simulations; for the jth chain these are denoted

{X1j, X2j, X3j, . . . , Xlj} with j = 1, 2, . . . ,m. Recall that we are interested in esti-

mating Eπg and define Yij = g(Xij),

B =
l

m− 1

m∑
j=1

(Ȳ·j − Ȳ··)
2 and W =

1

m

m∑
j=1

s2
j

where Ȳ·j = l−1
∑l

i=1 Yij, Ȳ·· = m−1
∑m

j=1 Ȳ·j and s2
j = (l−1)−1

∑l
i=1(Yij− Ȳ·j)2. Note

that Ȳ·· is the resulting point estimate of Eπg. Let

V̂ =
l − 1

l
W +

(m+ 1)B

ml
, d ≈ 2V̂

v̂ar(V̂ )
,

and define the corrected potential scale reduction factor

R̂ =

√
d+ 3

d+ 1

V̂

W
.

As noted by Gelman et al. (2004), V̂ and W are essentially two different estimators

of varπg; not σ2
g from the Markov chain CLT. That is, neither V̂ nor W address the

sampling variability of ḡn and hence neither does R̂.
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In our examples we used the R package coda which reports an upper bound on R̂

(see Section 1.7.2). Specifically, a 97.5% upper bound for R̂ is given by

R̂0.975 =

√
d+ 3

d+ 1

[
l − 1

l
+ F0.975,m−1,w

(
m+ 1

ml

B

W

)]
,

where F0.975,m−1,w is the 97.5% percentile of an Fm−1
w distribution, w = 2W 2/σ̂2

W and

σ̂2
W =

1

m− 1

m∑
j=1

(
s2

j −W
)2

.

In order to stop the simulation the user provides a cutoff, δ > 0, and simulation

continues until

R̂0.975 + p(n) ≤ δ . (1.7)

As with fixed-width methods, the role of p(n) is to ensure that we do not stop the

simulation prematurely due to a poor estimate, R̂0.975. By requiring a minimum total

simulation effort of n∗ = 2lm we are effectively setting p(n) = δI(n < n∗) where n

indexes the total simulation effort.

Remarks

1. A rule of thumb suggested by Gelman et al. (2004) is to set δ = 1.1. These

authors also suggest that a value of δ closer to 1 will be desirable in a “final

analysis in a critical problem” but give no further guidance. Since neither R̂

nor R̂0.975 directly estimates the Monte Carlo error in ḡn it is unclear to us that

R̂ ≈ 1 implies ḡn is a good estimate of Eπg.

2. How large should m be? There seem to be few guidelines in the literature

except that m ≥ 2 since otherwise we cannot calculate B. Clearly, if m is too

large then each chain will be too short to achieve any reasonable expectation of
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convergence within a given computational effort.

3. The initial values, Xj1, of the m parallel chains should be drawn from an

“over-dispersed” distribution. Gelman and Rubin (1992) suggest estimating

the modes of π and then using a mixture distribution whose components are

centered at these modes. Constructing this distribution could be difficult and

is often not done in practice (Gelman et al., 2004, p. 593).

4. To our knowledge there has been no discussion in the literature about optimal

choices of p(n) or n∗. In particular, we know of no guidance about how long

each of the parallel chains should be simulated before the first time we check

that R̂0.975 < δ or how often one should check after that. However, the same

theoretical results that could give guidance in item 3 of Section 4.1.1 would

apply here as well.

5. GRD was originally introduced simply as a method for determining an ap-

propriate amount of burn-in. However, using diagnostics in this manner may

introduce additional bias into the results, see Cowles et al. (1999).

Toy Example

We consider implementation of GRD in the toy example introduced in Section 1.3.2.

The first issue we face is choosing the starting values for each of the m parallel chains.

Notice that

π(µ, λ|y) = g1(µ|λ)g2(λ)

where g1(µ|λ) is a N(ȳ, λ/K) density and g2(λ) is an IG((K − 2)/2, (K − 1)s2/2)

density. Thus we can sequentially sample the exact distribution by first drawing from

g2(λ), and then conditionally, draw from g1(µ|λ). We will use this to obtain starting

values for each of the m parallel chains. Thus each of the m parallel Markov chains
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Stopping MSE for MSE for
Method Chains Rule E(µ|y) S.E. E(λ|y) S.E.
BM1 1 0.06 9.82e-05 4.7e-06 1.03e-03 4.5e-05
BM2 1 0.04 3.73e-05 1.8e-06 3.93e-04 1.8e-05
GRD1 2 1.1 7.99e-04 3.6e-05 8.7e-03 4e-04
GRD2 4 1.1 7.79e-04 3.7e-05 8.21e-03 3.6e-04
GRD3 2 1.005 3.49e-04 2.1e-05 3.68e-03 2e-04
GRD4 4 1.005 1.34e-04 9.2e-06 1.65e-03 1.2e-04

Table 1.2: Summary table for all settings and estimated mean-squared-error for es-
timating E(µ|y) and E(λ|y) for the toy example of Section 1.3.2. Standard errors
(S.E.) shown for each estimate.

will be stationary and hence GRD should be at a slight advantage compared to BM

started from ȳ.

Our goal is to investigate the finite-sample properties of the GRD by considering

the estimates of E(µ|y) and E(λ|y) as in Section 1.4.1. To this end, we took multiple

chains starting from different draws from the sequential sampler. The multiple chains

were run until the total simulation effort was n∗ = 400 draws; this is the same

minimum simulation effort we required of BM in the previous section. If R̂0.975 < δ

for both, the simulation was stopped. Otherwise, 10% of the current chain length was

added to each chain before R̂0.975 was recalculated. This continued until R̂0.975 was

below δ for both. This simulation procedure was repeated independently 1000 times

with each replication using the same initial values. We considered 4 settings using

the combinations of m ∈ {2, 4} and δ ∈ {1.005, 1.1}. These settings will be denoted

GRD1, GRD2, GRD3 and GRD4; see Table 1.2 for the different settings along with

summary statistics that will be considered later.

Upon completion of each replication, the values of µ̄n and λ̄n were recorded. Fig-

ures 1c–1f show histograms of µ̄n for each setting. We can see that all the settings

center around the true value of 1, and setting δ = 1.005 provides better estimates.

Increasing the number of chains seems to have little impact on the quality of esti-
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(b) µ̄n vs. n for GRD4

Figure 1.2: Estimating E(µ|y) for the toy example of Section 1.3.2. Estimates of
E(µ|y) versus number of draws for the BM2 and GRD4 settings.

mation, particularly when δ = 1.1. Histograms of λ̄n for each setting show similar

trends.

In the settings we investigated, GRD often terminated the simulations much

sooner than BM. Table 1.1 shows the percentage of the 1000 replications which were

stopped at their minimum (n∗ = 400) and the percentage with less than 1000 total

draws. The data clearly shows that premature stopping was common with GRD but

uncommon with BM. This is especially the case for GRD1 and GRD2 where over half

the replications used the minimum simulation effort.

Also, the simulation effort for GRD was more variable than that of BM. In par-

ticular, the average simulation effort was comparable for BM1 and GRD3 and also

BM2 and GRD4 but the standard errors are larger for GRD. Next, Figure 1.2 shows a

plot of the estimates, µ̄n, versus the total number of draws in the chains for BM2 and

GRD4. The graphs clearly show that the total number of draws was more variable

using GRD4 than using BM2. From a practical standpoint, this implies that when

using GRD we are likely to run a simulation either too long or too short. Of course,



1.4. Stopping the Simulation 19

if we run the simulation too long, we will be likely to get a better estimate. But if

the simulation is too short, the estimate can be poor.

Let’s compare GRD and BM in terms of the quality of estimation. Table 1.2 gives

the estimated mean-squared error (MSE) for each setting based on 1000 independent

replications described above. The estimates for GRD were obtained using the meth-

ods described earlier in this subsection while the results for BM were obtained from

the simulations performed for Section 1.4.1. It is clear that BM results in superior

estimation. In particular, note that using the setting BM1 results in better estimates

of E(µ|y) and E(λ|y) than using setting GRD4 while using approximately half the

average simulation effort (2191 (s.e. = 19.9) versus 5365 (150.5)); see Table 1.1.

Consider GRD4 and BM2. Note that these two settings have comparable average

simulation effort. The MSE for µ̄n using GRD was 0.000134 (9.2e-6) and for BM we

observed an MSE of 0.0000373 (1.8e-6). Now consider λ̄n. The MSE based on using

GRD was 0.00165 (1.2e-4) and for BM we observed an MSE of 0.000393 (1.8e-5).

Certainly, the more variable simulation effort of GRD contributes to this difference

but so does the default use of burn-in

Recall that we employed a sequential sampler to draw from the target distribution

implying that the Markov chain is stationary and hence burn-in is unnecessary. To

understand the effect of using burn-in we calculated the estimates of E(µ|y) using

the entire simulation; that is, we did not discard the first l draws of each of the

m parallel chains. This yields an estimated MSE of 0.0000709 (4.8e-6) for GRD4.

Thus, the estimates using GRD4 still have an estimated MSE 1.9 times larger than

that obtained using BM2. The standard errors of the MSE estimates show that this

difference is still significant, indicating BM, in terms of MSE, is still a superior method

for estimating E(µ|y). Similarly, for estimating E(λ|y) the MSE using GRD4 without

discarding the first half of each chain is 2.1 higher than that of BM2.

Toy examples are useful for illustration, however it is sometimes difficult to know
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just how much credence the resulting claims should be given. For this reason, we turn

our attention to a setting that is “realistic” in the sense that it is similar to the type

of setting encountered in practice. Specifically, we do not know the true values of the

posterior expectations and implementing a reasonable MCMC strategy is not easy.

Moreover, we do not know the convergence rate of the associated Markov chain.

1.5 Hierarchical Model for Geostatistics

The following example is directly from Flegal et al. (2008) which considers a data

set on wheat crop flowering dates in the state of North Dakota (Haran et al., 2008).

This data consists of experts’ model-based estimates for the dates when wheat crops

flower at 365 different locations across the state. Let D be the set of N sites and the

estimate for the flowering date at site s be Z(s) for s ∈ D. Let X(s) be the latitude

for s ∈ D. The flowering dates are generally expected to be later in the year as

X(s) increases so we assume that the expected value for Z(s) increases linearly with

X(s). The flowering dates are also assumed to be spatially dependent, suggesting the

following hierarchical model:

Z(s) | β, ξ(s) = X(s)β + ξ(s) for s ∈ D ,

ξ | τ 2, σ2, φ ∼ N(0,Σ(τ 2, σ2, φ)),

where ξ = (ξ(s1), . . . , ξ(sN))T with Σ(τ 2, σ2, φ) = τ 2I + σ2H(φ) and {H(φ)}ij =

exp((−‖si − sj‖)/φ), the exponential correlation function. We complete the specifi-

cation of the model with priors on τ 2, σ2, φ, and β,

τ 2 ∼ IG(2, 30), σ2 ∼ IG(0.1, 30),

φ ∼ Log-Unif(0.6, 6), π(β) ∝ 1 .
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Setting Z = (Z(s1), . . . , Z(sN)), inference is based on the posterior distribution

π(τ 2, σ2, φ, β | Z). Note that MCMC may be required since the integrals required for

inference are analytically intractable. Also, samples from this posterior distribution

can then be used for prediction at any location s ∈ D.

Consider estimating the posterior expectation of τ 2, σ2, φ, and β. Unlike the toy

example considered earlier these expectations are not analytically available. Sampling

from the posterior is accomplished via a Metropolis-Hastings sampler with a joint

update for the τ 2, φ, β via a three-dimensional independent Normal proposal centered

at the current state with a variance of 0.3 for each component and a univariate Gibbs

update for σ2.

To obtain a high quality approximation to the desired posterior expectations we

used a single long run of 500,000 iterations of the sampler and obtained 23.23 (.0426),

25.82 (.0200), 2.17 (.0069), and 4.09 (4.3e-5) as estimates of the posterior expectations

of τ 2, σ2, φ, and β, respectively. These are assumed to be the truth. We also recorded

the 10th, 30th, 70th and 90th percentiles of this long run for each parameter.

Our goal is to compare the finite-sample properties of GRD and BM in terms

of quality of estimation and overall simulation effort. Consider implementation of

GRD. We will produce 100 independent replications using the following procedure.

For each replication we used m = 4 parallel chains from four different starting values

corresponding to the 10th, 30th, 70th and 90th percentiles recorded above. A mini-

mum total simulation effort of 1000 (250 per chain) was required. Also, no burn-in

was employed. This is consistent with our finding in the toy example that estimation

improved without using burn-in. Each replication continued until R̂0.975 ≤ 1.1 for all

of the parameter estimates. Estimates of the posterior expectations were obtained by

averaging draws across all 4 parallel chains.

Now consider the implementation of BM. For the purpose of easy comparison with

GRD, we ran a total of 400 independent replications of our MCMC sampler, where the
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Method GRD BM
Parameter MSE S.E. MSE S.E.
E(τ 2|z) 0.201 0.0408 0.0269 0.00185
E(σ2|z) 0.0699 0.0179 0.00561 0.00039
E(φ|z) 0.00429 0.00061 0.000875 5.76e-05
E(β|z) 1.7e-07 3.09e-08 3.04e-08 1.89e-09

Table 1.3: Summary of estimated mean-squared error obtained using BM and GRD
for the model of Section 1.5. Standard errors (S.E.) shown for each estimate.

10th, 30th, 70th and 90th percentiles of the parameter samples from the long run were

used as starting values for 100 replications each. Each replication was simulated for

a minimum of 1000 iterations so p(n) = εI(n < 1000). Thus the minimum simulation

effort is the same as that for GRD. Using (1.6), a single replication (chain) was

terminated when each of the half-widths of a 95% interval was smaller than 0.5, 0.5,

0.05 and 0.05 for the estimates of the posterior expectations of τ 2, σ2, φ, and β,

respectively. These thresholds correspond to reasonable desired accuracies for the

parameters. If the half-width was not less than the cutoff, then 10 iterations were

added to the chain before checking again.

The results from our simulation study are summarized in Table 1.3. Clearly, the

MSE for estimates using GRD are significantly higher than the MSE for estimates ob-

tained using BM. However, BM required a greater average simulation effort 31,568.9

(177.73) than did GRD 8,082 (525.7). To study whether the BM stopping rule de-

livered confidence intervals at the desired 95% levels, we also estimated the coverage

probabilities for the intervals for the posterior expectations of τ 2, σ2, φ, and β, which

were 0.948 (0.0112), 0.945 (0.0114), 0.912 (0.0141), and 0.953 (0.0106) respectively.

The coverage for all parameters is fairly close to the desired 95%.

Finally, we note that this simulation study was conducted on a Linux cluster using

R (Ihaka and Gentleman, 1996), an MCMC package for spatial modeling, spBayes

(Finley et al., 2007), and the parallel random number generator package rlecuyer
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(L’Ecuyer et al., 2002).

1.6 Discussion

The point of this chapter is that those examining the results of MCMC computations

are much better off when reliable techniques are used to estimate MCSEs and then the

MCSEs are reported. An MCSE provides two desirable properties: (1) It gives useful

information about the quality of the subsequent estimation and inference; and (2) it

provides a theoretically justified, yet easily implemented, approach for determining

appropriate stopping rules for their MCMC runs. On the other hand, a claim that a

test indicated the sampler “converged” is simply nowhere near enough information to

objectively judge the quality of the subsequent estimation and inference. Discarding

a set of initial draws does not necessarily improve the situation.

A key requirement for reporting valid Monte Carlo standard errors is that the

sampler mixes well. Finding a good sampler is likely to be the most challenging part

of the recipe we describe. We have given no guidance on this other than one should

look within the class of geometrically ergodic Markov chains if at all possible. This is

an important matter in any MCMC setting; that is, a Markov chain that converges

quickly is key to obtaining effective simulation results in finite time. Thus there is

still a great deal of room for creativity and research in improving samplers but there

are already many useful methods that can be implemented for difficult problems. For

example, one of our favorite techniques is simulated tempering (Geyer and Thompson,

1995; Marinari and Parisi, 1992) but many others are possible.
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1.7 Proofs and Calculations

1.7.1 Toy Example

This section contains calculations to verify the necessary conditions for a Markov

chain CLT and fixed-width methods (see Chapter 2).

Normal Moments

In this section, we calculate the first eight moments for a normal distribution for use

in Sections 1.7.1 and 1.7.1. Let X ∼ N(µ, σ2), then it’s easy to calculate directly or

by the moment generating function the following moments:

EX1 = µ ,

EX2 = µ2 + σ2 ,

EX3 = µ3 + 3µσ2 ,

EX4 = µ4 + 6µ2σ2 + 3σ4 .

Then we can appeal to Stein’s Lemma.

Lemma 1. (Stein’s Lemma) Let X ∼ N(µ, σ2), and let g be a differentiable function

satisfying E|g′(x)| <∞. Then

E [g(X)(X − µ)] = σ2Eg′(x) .
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Applying Stein’s Lemma, we can calculate

EX5 = EX4(X − µ+ µ)

= EX4(X − µ) + µEX4

= 4σ2EX3 + µEX4

= 4σ2
(
µ3 + 3µσ2

)
+ µ

(
µ4 + 6µ2σ2 + 3σ4

)
= µ5 + 10µ3σ2 + 15µσ4 .

Similarly,

EX6 = EX5(X − µ+ µ)

= EX5(X − µ) + µEX5

= 5σ2EX4 + µEX5

= 5σ2
(
µ4 + 6µ2σ2 + 3σ4

)
+ µ

(
µ5 + 10µ3σ2 + 15µσ4

)
= µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6 .

Similarly,

EX7 = EX6(X − µ+ µ)

= EX6(X − µ) + µEX6

= 6σ2EX5 + µEX6

= 6σ2
(
µ5 + 10µ3σ2 + 15µσ4

)
+ µ

(
µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6

)
= µ7 + 21µ5σ2 + 105µ3σ4 + 105µσ6 .
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Similarly,

EX8 = EX7(X − µ+ µ)

= EX7(X − µ) + µEX7

= 7σ2EX6 + µEX7

= 7σ2
(
µ6 + 15µ4σ2 + 45µ2σ4 + 15σ6

)
+ µ

(
µ7 + 21µ5σ2 + 105µ3σ4 + 105µσ6

)
= µ8 + 28µ6σ2 + 210µ4σ4 + 420µ2σ6 + 105σ8 .

Sequential Sampling

For the toy example, the posterior density is proportional to (1.5). That is

π(µ, λ|y) =
λ−

m+1
2 exp

{
− 1

2λ

∑m
j=1(yj − µ)2

}
c

, (1.8)

where

c =

∫
R+

∫
R
λ−

m+1
2 e−

1
2λ

Pm
j=1(yj−µ)2dµdλ

=

∫
R+

λ−
m+1

2

√
2πλ

m
e−

1
2λ

Pm
j=1(yj−ȳm)2

[∫
R

√
m

2πλ
e−

m
2λ

(ȳm−µ)2dµ

]
dλ

=

∫
R+

λ−
m+1

2

√
2πλ

m
e−

1
2λ

Pm
j=1(yj−ȳm)2dλ

=

√
2π

m

Γ(m−2
2

)

(s2/2)
m−2

2

[∫
R+

(s2/2)
m−2

2

Γ(m−2
2

)
λ−(m−2

2
+1)e−

s2

2λdλ

]

=

√
2π

m

Γ(m−2
2

)

(s2/2)
m−2

2

.
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Next, we can plug this into (1.8) and group terms,

π(µ, λ|y) =

[√
m

2π

(s2/2)
m−2

2

Γ(m−2
2

)

]
λ−

m+1
2 e−

1
2λ

Pm
j=1(yj−µ)2

=

[
(s2/2)

m−2
2

Γ(m−2
2

)
λ−(m−2

2
+1)e−

s2

2λ

] [√
m

2πλ
e−

m
2λ

(ȳm−µ)2dµ

]
= g1(λ)g2(µ|λ),

where g1(λ) is an IG(m−2
2
, s2/2) and g2(µ|λ) is a N(ȳm, λ/m). Using this represen-

tation, we can sequentially sample the exact distribution. First, we can take a draw

from g1(λ), and then conditionally, draw from g2(µ|λ).

Calculating E(µ|y) and E(λ|y)

Using similar techniques as Section 1.7.1, we can calculate the mean of Eπ(µ|y);

Eπ(µ|y) =

∫
R+

g1(λ)

[∫
R
µg2(µ|λ)dµ

]
dλ

=

∫
R+

g1(λ)ȳmdλ

= ȳm .

Similarly, we can calculate the mean of Eπ(λ|y);

Eπ(λ|y) =

∫
R+

λg1(λ)

[∫
R
g2(µ|λ)dµ

]
dλ

=

∫
R+

λg1(λ)dλ

=
s2

2
m−2

2
− 1

=
s2

m− 4
,

if m > 4.
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Calculating M

Using similar techniques as Section 1.7.1, we can verify the M is ȳm;

Prπ(µ < ȳm) =

∫
R+

g1(λ)

[∫ ȳm

−∞
g2(µ|λ)dµ

]
dλ

=

∫
R+

g1(λ)
1

2
dλ

=
1

2
,

similarly, Prπ(µ > ȳm) = 1/2.

Verifying the Central Limit Theorem

Consider estimation of Eπ(µ|y) with µ̄n. To apply the CLT, Theorem 2, we need to

show that Eπ(µ2+ε|y) <∞. Here, we will show that Eπ(µ3|y) <∞.

Eπ(µ3|y) =

∫
R+

g1(λ)

[∫
R
µ3g2(µ|λ)dµ

]
dλ

=

∫
R+

g1(λ)

[
ȳ3

m + 3ȳm
λ

m

]
dλ

= ȳ3
m +

3ȳm

m

∫
R+

λg1(λ)dλ

= ȳ3
m +

3ȳm

m

s2

m− 4
,

which is clearly finite for m > 4 and any other parameter values we are considering.

This, combined with Jones and Hobert (2001) showing this sampler is geometrically

ergodic when m > 4, implies we can apply Theorem 2.

Next, we can consider the case of trying to estimate Eπ(λ|y) with λ̄n. Here, we
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will look at Eπ(λ3|y),

Eπ(λ3|y) =

∫
R+

λ3g1(λ)

[∫
R
g2(µ|λ)dµ

]
dλ

=

∫
R+

λ3g1(λ)dλ

=

∫
R+

λ3

[
(s2/2)

m−2
2

Γ(m−2
2

)
λ−(m−2

2
+1)e−

s2

2λ

]
dλ

=
(s2/2)

m−2
2

Γ(m−2
2

)

∫
R+

λ−(m−8
2

+1)e−
s2

2λdλ

=
Γ(m−8

2
)

Γ(m−2
2

)

(
s2

2

)3

if m > 8. Again, we can appeal to Theorem 2 to estimate Eπ(λ|y).

Verifying Proposition 2 for BM

Consider estimation of Eπ(µ|y) with µ̄n and calculating the MCSE with BM. First,

we will show that Eπ(µ8|y) <∞.

Eπ(|µ8| | y) = Eπ(µ8|y)

=

∫
R+

g1(λ)

[∫
R
µ8g2(µ|λ)dµ

]
dλ

=

∫
R+

g1(λ)

[
ȳ8

n + 28ȳ6
n

λ

m
+ 210ȳ4

n

λ2

m2
+ 420ȳ2

n

λ3

m3
+ 105

λ4

m4

]
dλ

≤ Constant + Constant

∫
R+

g1(λ)λ4dλ <∞

if m > 10. With this moment condition, we can apply Proposition 2 with a batch

size of bn = bnνc for any ν such that 1/4 < ν < 1.
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Similarly, consider estimating Eπ(λ|y) with λ̄n. If m = 11 as in our example, then

Eπ(|λ2+δ| | y) = Eπ(λ2+δ|y)

=

∫
R+

λ2+δg1(λ)dλ

<∞

for δ < 5/2. Then with this moment condition, we can apply Proposition 2 with a

batch size of bn = bnνc for any ν such that 4/9 < ν < 1.

1.7.2 More on the Gelman-Rubin Diagnostic

While Brooks and Gelman (1998) propose the use of R̂ as a tool to evaluate the

convergence of a Markov chain, they give no practical manner in which to calculate

v̂ar(V̂ ). Examination of the coda code reveals v̂ar(V̂ ) is calculated in the following

manner:

v̂ar(V̂ ) = v̂ar

(
l − 1

l
W +

(m+ 1)B

ml

)
=

(l − 1)2

l2
σ̂2

W +
(m+ 1)2

m2l2
σ̂2

B + 2
l − 1

l

(m+ 1)

ml
ˆcov(B,W ) ,

where

σ̂2
B =

2 ∗B2

m− 1
,
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and

ˆcov(B,W ) = ˆcov

(
l

m− 1

m∑
j=1

(Ȳ·j − Ȳ··)
2 ,

1

m

m∑
j=1

s2
j

)

=
l

(m− 1)m
ˆcov

(
m∑

j=1

[
Ȳ 2
·j + Ȳ 2

·· − 2Ȳ·jȲ··
]

,
m∑

j=1

s2
j

)

=
l

(m− 1)m

[
ˆcov

(
m∑

j=1

Ȳ 2
·j ,

m∑
j=1

s2
j

)
+ ˆcov

(
mȲ 2

·· ,
m∑

j=1

s2
j

)

−2 ˆcov

(
m∑

j=1

Ȳ·jȲ·· ,
m∑

j=1

s2
j

)]

=
l

(m− 1)m

[
ˆcov

(
m∑

j=1

Ȳ 2
·j ,

m∑
j=1

s2
j

)
+ 0− 2Ȳ·· ˆcov

(
m∑

j=1

Ȳ·j ,
m∑

j=1

s2
j

)]
.

Then define Ȳ· = (Ȳ·1, . . . , Ȳ·m)T , Ȳ 2
· = (Ȳ 2

·1, . . . , Ȳ
2
·m)T and s2 = (s2

1, . . . , s
2
m)T . Then

coda estimates the following quantities as

ˆcov

(
m∑

j=1

Ȳ 2
·j ,

m∑
j=1

s2
j

)
= m2cor

(
Ȳ 2
· , s2

)
and

ˆcov

(
m∑

j=1

Ȳ·j ,
m∑

j=1

s2
j

)
= m2cor

(
Ȳ· , s2

)
.

Of course, coda uses m−1 instead of m2, but I think this is just an error in the code.

With my correction, this yields the following estimate

v̂ar(V̂ ) =
(l − 1)2

l2
σ̂2

W +
(m+ 1)2

m2l2
σ̂2

B

+ 2
(l − 1)(m+ 1)

l(m− 1)

[
cor
(
Ȳ 2
· , s2

)
− 2Ȳ··cor

(
Ȳ· , s2

)]
.

An obvious question to ask would be “Why calculate v̂ar(V̂ ) in this manner?”

Particularly, the above calculation assumes that Ȳ·· is a fixed quantity (which it is
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clearly not). However, we are not interested in improving this ad-hoc diagnostic

considering the poor results from implementation of the GRD in our examples.



Chapter 2

Markov Chain Monte Carlo

MCMC has become a standard technique in the toolbox of applied statisticians.

Simply put, MCMC is a method for using a computer to generate data in order to

estimate fixed, unknown quantities of a target distribution. That is, a common use

of MCMC is to produce a point estimate of some characteristic of a given target

distribution.

As stated above, consider the specific case where we are interested in finding

Eπg :=
∫

X
g(x)π(dx) where π is a probability distribution with support X and g is a

real-valued, π-integrable function on X. (Chapter 4 considers a more general case.) In

modern applications we often have to resort to MCMC methods to approximate Eπg.

To this end, this chapter discusses the relevant Markov chain theory with particular

attention paid to the conditions and definitions needed to establish a Markov chain

central limit theorem. In addition, these conditions are verified in the context of two

examples.

2.1 Markov Chains

This section provides a brief discussion of Markov chain theory; for more details see

Jones and Hobert (2001); Meyn and Tweedie (1993); Tierney (1994).

33
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Let X = {X1, X2, X3, . . . } be a discrete-time Markov chain on a general state

space X and let B denote the associated Borel σ-algebra. Then let P (x, dy) denote

the associated Markov transition kernel; that is, for x ∈ X and A ∈ B,

P (x,A) = Pr(Xi+1 ∈ A|Xi = x).

For n ∈ N := {1, 2, 3, . . . }, let P n(x, dy) denote the n-step Markov transition kernel;

that is, for x ∈ X, A ∈ B, and i ∈ N,

P n(x,A) = Pr(Xn+i ∈ A|Xi = x).

For ease of exposition, we will often assume that the probability measure P (x, ·) has

a conditional density, k(·|x), with respect to Lebesgue measure so that,

P (x,A) =

∫
A

k(u|x)du .

We will call k a Markov transition density. Further, if there exists a density π such

that

π(x) =

∫
X

k(x|y)π(y)dy , (2.1)

then π is called the stationary or invariant density for the Markov chain X. Consider

the idea of stationarity in (2.1). If we begin by drawing y from π and apply the

Markov transition kernel, P (x, dy), resulting in the transition x→ y. Then the joint

density of (y, x) has the same formula as seen in (2.1), implying the marginal density

of x is also π. Consequently, if we can drawX1 ∼ π, thenX is a sequence of dependent

observations from π, or the chain is stationary.

Practically, it is usually impossible to draw from π (hence the use of MCMC in the

first place), therefore we might consider conditions under which the chain “converges”
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to π. Define

‖P n(x, ·)− π(·)‖ := sup
A∈B

|P n(x,A)− π(A)| ,

the total variation distance between the probability measures P n(x, ·) and π(·). Un-

der regularity assumptions, something can be said about the total variation distance.

First, the following are some important definitions.

Definition 1. A Markov chain transition kernel P is π-irreducible if for any x ∈ X

and for any set A with π(A) > 0, there exists an n such that P n(x,A) > 0.

In other words, starting from any point in the state space, there exists an n such

that there is positive probability we can reach any set having positive π-probability.

If X is a Markov chain with a π-irreducible transition kernel, we will say X is a

π-irreducible Markov chain.

Definition 2. A π-irreducible Markov transition kernel P is periodic if there exists

an integer d ≥ 2 and a collection of disjoint sets A1, . . . , Ad ∈ B such that for each

x ∈ Aj, P (x,Aj+1) = 1 for j = 1, . . . , d − 1, and for each x ∈ Ad, P (x,A1) = 1.

Otherwise, P is said to be aperiodic.

That is, P is periodic if we can partition the state space in such as way as to

introduce cyclic behavior. If no such partition exists, then P is aperiodic. Similarly,

if X is a Markov chain with periodic (aperiodic) P , then we will say X is periodic

(aperiodic).

Definition 3. If X is a π-irreducible Markov chain where π is the stationary distribu-

tion, then X is recurrent if for every set A with π(A) > 0,

Pr(Xn ∈ A i.o.|X1 = x) > 0 for all x ,

Pr(Xn ∈ A i.o.|X1 = x) = 1 for π-almost all x .

The chain is Harris recurrent if Pr(Xn ∈ A i.o.|X1 = x) = 1 for all x.
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If π is a probability distribution, then X is positive recurrent (or positive

Harris recurrent).

When a chain is π-irreducible, aperiodic, and positive Harris recurrent, we will

call it Harris ergodic.

Proposition 1. Suppose P is π-irreducible and π is an invariant distribution of P .

Then P is positive recurrent and π is the unique invariant distribution of P . If P is

also aperiodic, then, for π-almost all x,

‖P n(x, ·)− π(·)‖ → 0 as n→∞ .

If P is positive Harris recurrent, then the convergence occurs for all x.

Athreya et al. (1996) provide a proof of Proposition 1. The proposition shows the

limit of the total variation norm is zero for Harris ergodic chains, but says nothing

about the rate of convergence. We are particularly interested in bounding the rate

of convergence of the total variation norm because of its connection to Markov chain

CLTs and consistent estimators of the associated asymptotic variance.

The previous chapter defined one rate of convergence which we will use in the

following sections. The formal definition is as follows.

Definition 4. Let X be a Harris ergodic Markov chain with invariant distribution

π. The chain is geometrically ergodic if there exists a constant 0 < t < 1 and a

function M : X 7→ R+ such that for any x ∈ X,

‖P n(x, ·)− π(·)‖ ≤M(x)tn (2.2)

for n ∈ N. If there exists a bounded M satisfying (2.2), then X is uniformly ergodic

(and if X has a finite number of elements, then M is clearly bounded).
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2.1.1 Establishing Geometric Ergodicity

In this section, two approaches for establishing geometric ergodicity are presented.

Assume X is a Harris ergodic Markov chain with invariant distribution π. We will

say a drift condition holds if for some function W : X 7→ [1,∞), some 0 < γ < 1

and some L <∞,

E [W (Xi+1)|Xi = x] ≤ γW (x) + I(x∈S)L for all x ∈ X (2.3)

where S = {x ∈ X : W (x) ≤ d} and

d =
L

1− γ
− 1.

Next, a minorization condition holds if for some probability measure Q on B,

some set C with π(C) > 0, and some ε > 0

P (x,A) ≥ εQ(A) for all x ∈ C and for all A ∈ B . (2.4)

If an associated minorization condition holds with C = S, then it is well known that

the associated minorization condition with (2.3) imply X is geometrically ergodic

(Meyn and Tweedie, 1993).

AR(1) Example

Consider the first order autoregressive process as follows

Xi = ρXi−1 + εi for i = 1, 2, . . . ,

where εi is an i.i.d. N(0,τ 2) for i = 1, 2, . . . . It is easy to show the distribution of

Xi+1|Xi = x is given by N(ρx, τ 2) resulting in a normal conditional density, say k(·|x).
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Let W (x) = x2 + 1, then

E [W (Xi+1)|Xi = x] = ρ2x2 + τ 2 + 1

= ρ2
(
x2 + 1

)
+ τ 2 +

(
1− ρ2

)
=

1 + ρ2

2
W (x)− 1− ρ2

2
W (x) + τ 2 +

(
1− ρ2

)
= γW (x)− (1− γ)W (x) + L ,

where γ := (1 + ρ2)/2 and L := [τ 2 + (1− ρ2)]. Notice, for all x ∈ R

E [W (Xi+1)|Xi = x] ≤ γW (x) + L (2.5)

and if |ρ| < 1 and W (x) > L/ (1− γ)

E [W (Xi+1)|Xi = x] ≤ γW (x) . (2.6)

Combining (2.5) and (2.6) yields

E [W (Xi+1)|Xi = x] ≤ γW (x) + I(x∈S)L for all x ∈ X

where S = {x ∈ X : W (x) ≤ dRT} and dRT = L/ (1− γ). Further, since

L

1− γ
>

L

1− γ
− 1

this constitutes a drift condition of the form (2.3).

Next, we will show the associated minorization condition when W (x) ≤ d2. Let

N(µ, τ 2;x) denote the value of the N(µ, τ 2) density at the point x ∈ R. If τ 2 > 0 and
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d ∈ R are fixed, then define h(x)

h(x) := inf
−d≤µ≤d

N
(
µ, τ 2;x

)
=

N (d, τ 2;x) if x < 0 ,

N (−d, τ 2;x) if x ≥ 0 .

Then for all x ∈ [−d, d]

k(x|x′) ≥ εq(x)

where ε =
∫
R h(x)dx and

q(x) =
h(x)∫

R h(x)dx
.

Thus, the associated minorization condition from (2.4) holds for all x ∈ X with

W (x) ≤ d2 and for all A ∈ B.

Finally, for |ρ| < 1 the AR(1) model is geometrically ergodic.

Rosenthal-type Drift Condition

The drift condition in (2.3) is sometimes referred to as a Roberts-and-Tweedie-type

drift condition (Roberts and Tweedie, 1999, 2001). However, there is an alternative

equivalent drift condition sometimes referred to as a Rosenthal-type drift condition

(Rosenthal, 1995). Again, we will assume X is a Harris ergodic Markov chain with

invariant distribution π. A Rosenthal-type drift condition holds if for some function

V : X 7→ R+, some 0 < λ < 1, and some constant b <∞

E [V (Xi+1)|Xi = x] ≤ λV (x) + b for all x ∈ X . (2.7)

Notice, in (2.7) we are taking the expectation with respect to the Markov transition

kernel. The function V is sometimes called an energy function from the fact when

the drift condition holds, the chain tends to “drift” towards states of lower energy in

terms of expectation.
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Often, the drift condition in (2.7) can be easier to establish.

Connection Between Drift Functions

Clearly, the drift condition in (2.3) implies the drift condition in (2.7). Jones and

Hobert (2004) show that (2.7) implies (2.3) in general.

Lemma 2. (Jones and Hobert, 2004, Lemma 3.1) Let X be a Harris ergodic Markov

chain with invariant distribution π. Suppose there exists V : X 7→ R+, 0 < λ < 1,

and b <∞ such that

E [V (Xi+1)|Xi = x] ≤ λV (x) + b for all x ∈ X . (2.8)

Set W (x) = 1 + V (x). Then, for any a > 0,

E [W (Xi+1)|Xi = x] ≤ γW (x) + I(x∈S)L for all x ∈ X , (2.9)

where γ = (a+ λ)/(a+ 1), L = b+ (1− λ) and

S =

{
x ∈ X : W (x) ≤ (a+ 1)L

a(1− γ)

}
.

Then since
(a+ 1)L

a(1− γ)
≥ L

(1− γ)
− 1 ,

(2.9) constitutes a drift condition of the form of (2.3). Hence, if we can establish

(2.7) and the associated minorization condition

P (x,A) ≥ εQ(A) for all x ∈ X with V (x) ≤ d and for all A ∈ B

then the Markov chain is geometrically ergodic.
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AR(1) Example

Recall the AR(1) model and let V (x) = x2, then

E [V (Xi+1)|Xi = x] = ρ2x2 + τ 2

= ρ2V (x) + τ 2 ,

for all x ∈ X. Suppose |ρ| < 1, then the drift condition in (2.7) holds where λ ∈ [ρ2, 1)

and b ∈ [τ 2,∞).

An associated minorization condition can be established as before, and hence the

chain is geometrically ergodic if |ρ| < 1.

2.2 Markov Chain Monte Carlo

Suppose that X = {X1, X2, X3, . . . } is a Harris ergodic Markov chain with state space

X and invariant distribution π (for definitions see Section 2.1). We will maintain these

assumptions throughout this thesis. Typically, estimating Eπg is natural by appealing

to the Ergodic Theorem.

Theorem 1. Let X be a Harris recurrent Markov chain on X with invariant distri-

bution π and g : X → R be a Borel function. If Eπ|g| <∞ then, as n→∞

ḡn :=
1

n

n∑
i=1

g(Xi) → Eπg almost surely, (2.10)

for any initial distribution.

This follows directly from Theorems 17.0.1 and 17.1.6 in Meyn and Tweedie

(1993). Applying Theorem 1 to estimate Eπg is easily accomplished by using ḡn.

MCMC methods entail constructing a Markov chain X satisfying the regularity

conditions described above and then simulating X for a finite number of steps, say
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n, and using ḡn to estimate Eπg. The popularity of MCMC methods result from the

ease with which such an X can be simulated (Chen et al., 2000; Robert and Casella,

1999; Liu, 2001).

An obvious question is when should we stop the simulation? That is, how large

should n be? Or, when is ḡn a good estimate of Eπg? An obvious method of address-

ing the quality of the estimate is to calculate the associated Monte Carlo standard

error of ḡn. This requires a Central Limit Theorem (CLT), and some stronger reg-

ularity conditions. Specifically, we require the chain to be geometrically ergodic

or uniformly ergodic depending on the moment condition. We will also need to

remember a kernel P satisfies the detailed balance equation with respect to π if

π(dx)P (x, dy) = π(dy)P (y, dx) for all x, y ∈ X . (2.11)

The following states three different sets of regularity conditions (without proof) for

a Markov chain CLT. Other conditions and discussion can be found in Jones (2004)

and Roberts and Rosenthal (2004).

Theorem 2. Let X be a Harris ergodic Markov chain on X with invariant distribution

π, and let g : X → R be a Borel function. Assume one of the following conditions:

1. (Doukhan et al., 1994) X is geometrically ergodic and Eπ [g2(X)(log+|g(X)|)] <

∞;

2. (Roberts and Rosenthal, 1997) X is geometrically ergodic, satisfies (2.11), and

Eπg
2(X) <∞; or

3. (Ibragimov and Linnik, 1971) X is uniformly ergodic and Eπg
2(X) <∞.

Then, for any initial distribution, as n→∞,

√
n(ḡn − Eπg)

d→ N(0, σ2
g) , (2.12)
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where σ2
g := varπ{g(X1)}+2

∑∞
i=2 covπ{g(X1), g(Xi)}; the subscript π means that the

expectations are calculated assuming X1 ∼ π.

Application of Theorem 2 poses two distinct requirements. First, we must ver-

ify the necessary conditions. Specifically, we must ensure the appropriate moment

conditions. We must also construct a Harris ergodic Markov chain, X, with the ap-

propriate invariant distribution π satisfying geometric (or uniform) ergodicity. Once

we have a suitable X, we need to estimate σ2
g . This requires specialized techniques

that take into account the dependence in the observed Markov chain. This will be

addressed in Chapter 3.

2.3 Examples

Section 2.1.1 shows the AR(1) model is geometrically ergodic. In future sections,

MCMC will be implemented to estimate EπX. In this case it is easy to show that

EπX = 0 and Eπ |X|d < ∞ for all d < ∞, hence Theorem 2 can be applied. This

section considers a more realistic example.

2.3.1 Hierarchical Linear Mixed Models

Consider the usual frequentist general linear mixed model

Y = Xβ + Zu+ ε ,

where Y is an n× 1 vector of observations, X is a known n× p matrix, Z is a known

n×q matrix, β is a p×1 vector of parameters, u is a q×1 vector of random variables,

and ε is an n× 1 vector of residual errors. We assume that X is of full column rank

so that XTX is invertible. A Bayesian version of this model may be expressed as the



44 Chapter 2. Markov Chain Monte Carlo

following conditionally independent hierarchical model

Y |β, u,R,D ∼ Nn(Xβ + Zu,R−1)

β|u,R,D ∼ Np(β0, B
−1)

u|D,R ∼ Nq(0, D
−1)

with as yet unspecified priors f(R) and f(D). Here β0 and B−1 are assumed to be

known. The posterior density of (β, u,R,D) given the data, y, is characterized by

π(β, u,R,D|y) ∝ f(y|β, u,R,D)f(β|u,R,D)f(u|D,R)f(R)f(D) . (2.13)

We assume that the priors on R and D are such that the resulting posterior (2.13)

is proper. Even if proper conjugate priors are chosen, the integrals required for

inference through this posterior can not be evaluated in closed form. Thus, exploring

the posterior in order to make inferences might require MCMC.

Block Gibbs Sampler

Consider a block Gibbs sampler with components R, D and ξ = (uT , βT )T . The full

conditional densities for R and D are given by

π(R|ξ,D, y) = C−1
R (ξ)|R|1/2 exp{−0.5(y −Xβ − Zu)TR(y −Xβ − Zu)}f(R)

π(D|ξ, R, y) = C−1
D (ξ)|D|1/2 exp{−0.5uTDu}f(D)

where | · | is a determinant,

CR(ξ) =

∫
|R|1/2 exp{−0.5(y −Xβ − Zu)TR(y −Xβ − Zu)}f(R) dR ,
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and

CD(ξ) =

∫
|D|1/2 exp{−0.5uTDu}f(D) dD .

The density π(ξ|R,D, y) is (p+q)–variate Normal with mean ξ0 and covariance matrix

Σ−1 where

Σ =

ZTRZ +D ZTRX

XTRZ XTRX +B

 and Σξ0 =

 ZTRy

XTRy +Bβ0

 . (2.14)

Consider the block Gibbs sampler corresponding to the following updating scheme:

(D′, R′, ξ′) → (D,R′, ξ′) → (D,R, ξ′) → (D,R, ξ) .

Conditional on ξ, D and R are independent and hence the order in which they are

updated is irrelevant. That is, we are effectively dealing with a two-variable Gibbs

sampler. Suppressing dependence on the data, the transition density is given by

k(D,R, ξ|D′, R′, ξ′) = π(D|ξ′)π(R|ξ′)π(ξ|R,D) .

A Special Case

In this section, we identify a specific example of the model in Section 2.3.1 and

establish drift and minorization conditions for the block Gibbs sampler. Johnson and

Jones (2008) consider a much broader class of models. Suppose that p = 1 so that

X = (x1, . . . , xn)T ∈ Rn and that q = n with Z = In. Fix β0 = 0 and B−1 = 1.

Assume that R−1 = λ−1
R In and D−1 = λ−1

D In where λ−1
R and λ−1

D are scalar variance

components whose reciprocals are assigned the following conjugate priors

λR ∼ Gamma(r1, r2) and λD ∼ Gamma(d1, d2) .
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Set ξ = (uT , β)T and λ = (λD, λR)T .

Recall that the block Gibbs sampler from the previous section uses the sampling

scheme: (λ′, ξ′) → (λ, ξ′) → (λ, ξ). The full conditionals for the precision parameters

are given by

λR|ξ, y ∼ Gamma

(
r1 +

n

2
, r2 +

1

2
(y −Xβ − u)T (y −Xβ − u)

)
,

λD|ξ, y ∼ Gamma

(
d1 +

n

2
, d2 +

1

2
uTu

)
.

Let P be the transition kernel of this Gibbs sampler. Now ξ|λR, λD, y ∼ Nn+1(ξ0,Σ
−1)

where

Σ =

(λR + λD)In λRX

λRX
T 1 + λRX

TX

 and Σξ0 = λR

 y

XTy

 . (2.15)

We establish the drift condition for this sampler in Section 2.4.3 and the associated

minorization condition in Section 2.4.3. From these, we can conclude the chain is

geometrically ergodic (see Section 2.1.1 for details).

2.4 Proofs and Calculations

2.4.1 Proof of Lemma 2

This proof is shown in Jones and Hobert (2004). Clearly, (2.8) implies that

E [W (Xi+1)|Xi = x] ≤ λW (x) + b+ (1− λ) = λW (x) + L for all x ∈ X .

Set ∆W (x) = E [W (Xi+1)|Xi = x]−W (x) and β = (1− λ)/(a+ 1). Then

E [W (Xi+1)|Xi = x] ≤ [1− (a+ 1)β]W (x) + L
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or, equivalently,

∆W (x) ≤ −βW (x)− aβW (x) + L for all x ∈ X .

If x /∈ C, then

W (x) >
(a+ 1)L

a(1− γ)
>

(a+ 1)L

a(1− λ)
=

L

aβ
.

Now write W (x) = L
aβ

+ s(x), where s(x) > 0. Then

∆W (x) ≤ −βW (x)− aβ

[
L

aβ
+ s(x)

]
+ L

= −βW (x)− aβs(x)

≤ −βW (x) .

If, on the other hand, x ∈ C, then

∆W (x) ≤ −βW (x)− aβW (x) + L

≤ −βW (x) + L .

Now putting these together gives

E [W (Xi+1)|Xi = x] ≤ (1− β)W (x) + I(x∈S)L

= γW (x) + I(x∈S)L .

2.4.2 Mixing Conditions

This section will provide connections between different mixing conditions for future

use. Specifically, the goal of this section is to show that geometrically ergodic Markov

chains are exponentially fast alpha-mixing. We begin by deriving the coupling in-
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equality.

Let X = {X1, X2, X3, . . . } and Y = {Y1, Y2, Y3, . . . } be two Markov chains with

common transition kernel P satisfying the minorization condition in (2.4). Suppose

X1 is an arbitrary starting point in X and Y1 ∼ π, hence Y is stationary.

Then for each x ∈ C, define the residual kernel as

R(x, dy) =
P (x, dy)− εQ(dy)

1− ε
for ε < 1 ,

and R(x, ·) := 0 for ε = 1. It is easy to verify R is a transition kernel, and that

P (x, dy) = εQ(dy) + (1− ε)R(x, dy) .

Using this representation, we can consider updating X and Y in the following manner.

Let Xn = x and Yn = y.

1. If x = y, generate Z ∼ P (x, ·), and set Xn+1 = Yn+1 = Z.

2. If x 6= y, x ∈ C, and y ∈ C, generate δ ∼ Bernoulli(ε) then

(a) if δ = 0, generate Xn+1 ∼ R(x, ·) and Yn+1 ∼ R(y, ·) independently;

(b) if δ = 1, generate Z ∼ Q(·) and set Xn+1 = Yn+1 = Z.

3. If x 6= y and x /∈ C or y /∈ C generate Xn+1 ∼ P (x, ·) and Yn+1 ∼ P (y, ·)

independently.

It is clear this method retains the original transition kernel P for both chains. It is

also clear that if Xn = Yn, then Xn+k = Yn+k for all k ∈ N. In other words, once

the chains have coupled, all future draws of the two chains remain equal. Define

the coupling time as T = inf {t : Xt = Yt}, the random time when the two chains

couple.
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The following is the classical derivation of the coupling inequality

|P n(x0, A)− π(A)| = |Pr(Xn ∈ A)− Pr(Yn ∈ A)|

= |Pr(Xn ∈ A,Xn = Yn) + Pr(Xn ∈ A,Xn 6= Yn)−

Pr(Yn ∈ A,Xn = Yn)− Pr(Yn ∈ A,Xn 6= Yn)|

= |Pr(Xn ∈ A,Xn 6= Yn)− Pr(Yn ∈ A,Xn 6= Yn)|

≤ max {Pr(Xn ∈ A,Xn 6= Yn),Pr(Yn ∈ A,Xn 6= Yn)}

≤ Pr(Xn 6= Yn) ≤ Pr(T > n) .

Resulting in the coupling inequality

‖P n(x, ·)− π(·)‖ ≤ Pr(T > n) . (2.16)

Under our assumptions (Jones, 2004), the coupling time is almost surely finite and

Pr(T > n) → 0 as n→∞.

We will use the coupling inequality to show that Harris ergodic Markov chains

satisfying (2.4) are alpha mixing. First, let Fm
k = σ(Xk, . . . , Xm).

Definition 5. The sequence X is said to be alpha-mixing (or strongly mixing) if

α(n) → 0 as n→∞ where

α(n) := sup
k≥1

sup
A∈Fk

1 ,B∈F∞k+n

|P(A ∩B)− P(A)P(B)| .

Then let A and B be Borel sets so that by (2.16)

|P n(x,A)− π(A)| ≤ Prx(T > n)
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and

∫
B

Prx(T > n)π(dx) ≥
∫

B

|P n(x,A)− π(A)|π(dx)

≥ |
∫

B

[P n(x,A)− π(A)]π(dx)|

= |Pr(Xn ∈ A and X1 ∈ B)− π(A)π(B)| .

Then α(n) ≤ Eπ [Prx(T > n)] and a dominated convergence argument shows that

Eπ [Prx(T > n)] → 0 as n→∞ ,

and hence α(n) → 0 as n→∞.

Similarly, consider a geometrically ergodic Markov chain satisfying (2.2). Using

the same argument, let A and B be Borel sets so

|P n(x,A)− π(A)| ≤M(x)tn

and

∫
B

M(x)tnπ(dx) ≥
∫

B

|P n(x,A)− π(A)|π(dx)

≥ |
∫

B

[P n(x,A)− π(A)]π(dx)|

= |Pr(Xn ∈ A and X1 ∈ B)− π(A)π(B)| .

Then α(n) ≤ tnEπM(x) and if EπM(x) <∞, α(n) → 0 as n→∞.

Following the argument from Jones (2004), we want to show EπM(x) <∞. First,

notice that from either drift condition (2.7) or (2.3), we can take M(x) ∝ W (x) in

(2.2). Then we can appeal to Theorem 14.3.7 in Meyn and Tweedie (1993) that shows

if (2.3) holds then EπW (x) < ∞. Since a geometrically ergodic chain is equivalent
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to (2.3) (Meyn and Tweedie, 1993, Chapter 16) we can conclude that geometrically

ergodic Markov chains satisfy (2.2) with EπM(x) <∞. In other words, geometrically

ergodic Markov chains are exponentially fast alpha-mixing.

Remark 1. Results for a Markov chain CLT for quantiles require
∑∞

i=1 α(i) < ∞

(Chapter 4). If X is a geometrically ergodic Markov chain, then

∞∑
i=1

α(i) ≤
∞∑
i=1

ti [EπM(x)]

= [EπM(x)]
1

1− t
<∞ ,

because 0 < t < 1.

2.4.3 Block Gibbs Sampler

To simulate from this multivariate normal distribution we require the Cholesky de-

composition of Σ in (2.15), Σ = LLT , where L is

L =

l1 0

l2 l3

 .

Solving for L we obtain

l1 = aIn, l2 = bXT , and l3 = c

where a =
√
λR + λD , b = λR/a and c =

√
1 + (λRλD/a2)XTX. It is easy to see

that

L−1 =

 a−1In 0

−b(ac)−1XT c−1

 ,
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and hence

Σ−1 =

a−2In + (b/ac)2XXT −b/ac2X

−b/ac2XT c−2


=

 1
λR+λD

[
In +

λ2
R

λR+λD+λRλDXT X
XXT

]
−λR

λR+λD+λRλDXT X
X

−λR

λR+λD+λRλDXT X
XT λR+λD

λR+λD+λRλDXT X

 .

Also,

ξ0 =

 λR

λR+λD
Y − λ2

RλD

(λR+λD)(λR+λD+λRλDXT X)
XXTY

λRλD

λR+λD+λRλDXT X
XTY

 .

It is now easy to obtain the following expectations that we will require later.

E(λD|ξ) =
2d1 + n

2d2 + uTu

E(λ−1
D |ξ) =

2d2 + uTu

2d1 + n− 2

E(λR|ξ) =
2r1 + n

2r2 + (Y −Xβ − u)T (Y −Xβ − u)

E(λ−1
R |ξ) =

2r2 + (Y −Xβ − u)T (Y −Xβ − u)

2r1 + n− 2

E(β|λ) =
λRλD

λR + λD + λRλDXTX
XTY

E(ui|λ) =
λR

λR + λD

[yi − xiE(β|λ)]

Var(β|λ) =
λR + λD

λR + λD + λRλDXTX

Var(ui|λ) =
1

λR + λD

[
1 +

λ2
Rx

2
i

λR + λD + λRλDXTX

]
Cov(β, ui|λ) =

−λRxi

λR + λD + λRλDXTX

Cov(ui, uj|λ) =
λ2

Rxixj

(λR + λD)(λR + λD + λRλDXTX)
, i 6= j .
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Now

yi − xiE(β|λ) = yi − xi
λRλD

λR + λD + λRλDXTX
XTY

=
(λR + λD)yi + λRλDX

TX(yi − xiX
TY/XTX)

λR + λD + λRλDXTX
,

and hence yi − xiE(β|λ) is a convex combination of yi and yi − xiX
TY/XTX. Let ∆

denote the convex hull of the set

{(
yi, yi − xiX

TY/XTX
)

for i = 1, . . . , n
}
.

Then

yi − xiE(β|λ)− E(ui|λ) =
λD

λR + λD

[yi − xiE(β|λ)]

and hence

[yi − xiE(β|λ)− E(ui|λ)]2 ≤ ∆2 .

Drift for the Block Gibbs Sampler

In this section, we develop a drift condition as in (2.7) for the block Gibbs sampler.

Set

V1(ξ) = (Y −Xβ − u)T (Y −Xβ − u)

and V2(u) = uTu. These will be used in establishing both the drift and minorization

conditions.

Theorem 3. Suppose r1 > 1 and d1 > 1 and fix

γ ∈
(

max

{
n

2r1 + n− 2
,

n

2d1 + n− 2

}
, 1

)
.
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Define V (ξ) = φ1V1(ξ) + φ2V2(ξ). Then for any positive φ1 and φ2

PV (ξ′) ≤ γV (ξ′) + b

where PV (ξ′) = E[V (ξ)|λ′, ξ′] and

b =nφ1∆
2 + φ1X

TX + 2φ1
r2n

2r1 + n− 2

+nφ2∆
2 + φ2X

TX + 2φ2
d2(n+ 1)

2d1 + n− 2
.

Proof. Notice

E(V (ξ)|λ′, ξ′) = φ1E(V1(ξ)|ξ′) + φ2E(V2(ξ)|ξ′) .

The required expectations will be calculated separately via the following rule:

E[Vi(ξ)|λ′, ξ′] = E[Vi(ξ)|ξ′] = E[E(Vi(ξ)|λ)|ξ′] ,

for i = 1, 2.

First consider the inner expectation in E[E(V1(ξ)|λ)|ξ′].

E(V1(ξ)|λ) =
n∑

i=1

E[(yi − xiβ − ui)
2|λ]

=
n∑

i=1

Var[(yi − xiβ − ui)|λ] + [E(yi − xiβ − ui)|λ]2

=
n∑

i=1

x2
i Var(β|λ) + Var(ui|λ) + 2xiCov(β, ui|λ)

+ [yi − xiE(β|λ)− E(ui|λ)]2
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and hence

E(V1(ξ)|λ) ≤
n∑

i=1

x2
i Var(β|λ) + Var(ui|λ) + 2xiCov(β, ui|λ) + n∆2

=
n

λR + λD

+
(λR + λD)2 + λ2

R − 2λR(λR + λD)

(λR + λD)(λR + λD + λRλDXTX)
XTX + n∆2

=
n

λR + λD

+
λ2

D

(λR + λD)(λR + λD + λRλDXTX)
XTX + n∆2

≤ n

λR

+

(
λD

λR + λD + λRλDXTX

)
XTX + n∆2

≤ n

λR

+
λD

λD

XTX + n∆2

=
n

λR

+XTX + n∆2 .

Now for the outer expectation.

E(V1(ξ)|ξ′) ≤ nE(λ−1
R |ξ′) +XTX + n∆2

= n
2r2 + (Y −Xβ′ − u′)T (Y −Xβ′ − u′)

2r1 + n− 2
+XTX + n∆2

=
n

2r1 + n− 2
V1(ξ

′) +
2r2n

2r1 + n− 2
+XTX + n∆2 .

Now consider calculating E[E(V2(ξ)|λ)|ξ′]. We will again consider the inner expecta-

tion first.

E(V2(u)|λ) =
n∑

i=1

Var(ui|λ) + [E(ui|λ)]2

=
n

λR + λD

+
λ2

R

(λR + λD)(λR + λD + λRλDXTX)
XTX

+

(
λR

λR + λD

)2

n∆2

≤ n

λD

+

(
λR

λR + λD

)(
λR

λR + λD + λRλDXTX

)
XTX + n∆2

≤ n

λD

+XTX + n∆2 .
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Hence

E(V2(u)|ξ′) ≤ nE(λ−1
D |ξ′) +XTX + n∆2

=
n

2d1 + n− 2
V2(u

′) +
2d2n

2d1 + n− 2
+XTX + n∆2 .

Combining these two calculations yields

PV (ξ′) ≤ φ1

[
n

2r1 + n− 2
V1(ξ

′)

]
+ φ2

[
n

2d1 + n− 2
V2(u

′)

]
+ b

≤ γV (ξ′) + b .

Minorization for the Block Gibbs Sampler

In this section, we develop a minorization condition of the form (2.4) for the block

Gibbs sampler by closely following the argument of Jones and Hobert (2004). We

wish to establish the minorization condition on the set

SB = {ξ : V (ξ) ≤ dR} = {ξ : φ1V1(ξ) + φ2V2(ξ) ≤ dR} ,

for any dR > 0. First note that SB is contained in CB := CB1 ∩ CB2 , where

CB1 = {ξ : V1(ξ) ≤ dR/φ1} and CB2 = {ξ : V2(ξ) ≤ dR/φ2} .

Hence, it suffices to establish a minorization condition that holds on CB. This will

require the following lemma.

Lemma 3. (Jones and Hobert, 2004, Lemma 4.1) Let Gamma(α, β;x) denote the

value of the Gamma(α, β) density at the point x > 0. If α > 1, b > 0, and c > 0 are
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fixed, then, as a function of x

inf
0<β<c

Gamma(α, b+ β/2;x) =

Gamma(α, b;x) if x < x∗ ,

Gamma(α, b+ c/2;x) if x > x∗ ,

where

x∗ =
2α

c
log
(
1 +

c

2b

)
.

We now present the minorization condition for the block Gibbs sampler.

Theorem 4. Let q(λ, ξ) be a density on R2
+ × Rn+1 such that

q(λ, ξ) =

[
h1(λR)∫

R+
h1(λR)dλR

][
h2(λD)∫

R+
h2(λD)dλD

]
π(ξ|λ, y),

where

h1(λR) =

Gamma
(
r1 + n

2
, r2;λR

)
if λR < λ∗R

Gamma
(
r1 + n

2
, r2 + dR

2φ1
;λR

)
if λR ≥ λ∗R

for

λ∗R =
φ1(2r1 + n)

dR

log

(
1 +

dR

2φ1r2

)
and

h2(λD) =

Gamma
(
d1 + n

2
, d2;λD

)
if λD < λ∗D

Gamma
(
d1 + n

2
, d2 + dR

2φ2
;λD

)
if λD ≥ λ∗D

for

λ∗D =
φ2(2d1 + n)

dR

log

(
1 +

dR

2φ2d2

)
.

Then the following minorization condition is satisfied for the Markov transition den-

sity of the block Gibbs sampler:

k(λ, ξ|λ′, ξ′) ≥ εq(λ, ξ) for all ξ′ ∈ CB
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where ε =
[∫

R+
h1(λR)dλR

] [∫
R+
h2(λD)dλD

]
.

Proof. Assume ξ′ ∈ CB and recall that

π(λR|ξ′) = Gamma(r1 + n/2, r2 + V1(ξ
′)/2;λR) ,

π(λD|ξ′) = Gamma(d1 + n/2, d2 + V2(ξ
′)/2;λD) .

Therefore,

k(λ, ξ|λ′, ξ′) = π(λR|ξ′, y)π(λD|ξ′, y)π(ξ|λ, y)

≥ π(ξ|λ, y) inf
ξ′∈CB1

∩CB2

[π(λR|ξ′, y)π(λD|ξ′, y)]

≥ π(ξ|λ, y)
[

inf
ξ′∈CB1

∩CB2

π(λR|ξ′, y)
] [

inf
ξ′∈CB1

∩CB2

π(λD|ξ′, y)
]

≥ π(ξ|λ, y)
[

inf
ξ′∈CB1

π(λR|ξ′, y)
] [

inf
ξ′∈CB2

π(λD|ξ′, y)
]

where

inf
ξ′∈CB1

π(λR|ξ′, y) = inf
ξ′:v1(ξ′)≤dR/φ1

π(λR|ξ′, y) = h1(λR)

and

inf
ξ′∈CB2

π(λD|ξ′, y) = inf
ξ′:v2(ξ′)≤dR/φ2

π(λD|ξ′, y) = h2(λD).

This gives us k(λ, ξ|λ′, ξ′) ≥ q(λ, ξ) for

q(λ, ξ) ∝ π(ξ|λ)h1(λR)h2(λD).



Chapter 3

Monte Carlo Error

As we have seen, MCMC is a common statistical method where the goal is esti-

mating characteristics of a target distribution. An important, and often overlooked,

secondary goal is estimation of the associated asymptotic variance in the Markov

chain central limit theorem. Specifically, the variance is required in evaluating the

Monte Carlo standard error (MCSE) which is useful in measuring the accuracy of

the resulting estimate. We introduce several techniques for estimating the variance:

batch means, overlapping batch means, regeneration and spectral variance estimation.

In addition, we establish conditions under which these methods produce strongly

consistent estimators. For batch means and overlapping batch means, we establish

conditions which ensure consistency in the mean-square sense. Using mean-square

consistency, we calculate “optimal” batch sizes that minimize the asymptotic mean-

square error. Finally, we examine the finite sample properties in the context of some

examples and provide recommendations for practitioners.

Some of this chapter is contained in Flegal and Jones (2008). The results here are

expanded to contain the relevant supporting material from the literature.

59
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3.1 Introduction

Suppose the goal is to calculate Eπg :=
∫

X
g(x)π(dx) where g is a real-valued, π-

integrable function on X and π is a probability distribution with support X. Let

X = {X1, X2, X3, . . . } be a Harris ergodic Markov chain on a general space X having

invariant distribution π. The Ergodic Theorem from Chapter 2 shows with probability

one,

ḡn := n−1

n∑
i=1

g(Xi) → Eπg as n→∞ . (3.1)

Clearly, the resulting Monte Carlo approximation will not be exact. In other words,

we would rarely expect our estimate, ḡn, to equal the true quantity of interest, Eπg.

The estimate is bound to be off by some amount, ḡn − Eπg, previously defined as

the Monte Carlo error. Unless Eπg is known, we will never know the true Monte

Carlo error. However, we can assess this error by estimating the variance from the

asymptotic distribution of ḡn.

More specifically, suppose a Markov chain central limit theorem (CLT) exists for

g, for any initial distribution,

√
n(ḡn − Eπg)

d→ N(0, σ2
g) as n→∞ (3.2)

where σ2
g := varπ{g(X1)} + 2

∑∞
i=2 covπ{g(X1), g(Xi)}. The issue we study here is

how to consistently estimate σ2
g .

3.1.1 Stopping the Simulation

Estimating σ2
g is an important issue in MCMC output analysis since the estimate can

be used to decide when to terminate the simulation or assess the reliability of the

current point estimate ḡn; see Flegal et al. (2008), Hobert et al. (2002) and Jones

et al. (2006).
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When choosing a stopping criteria for MCMC simulations, a practitioner is forced

to choose between one long run or several independent smaller runs. Using one long

run requires specialized techniques which incorporate the dependent nature of the

underlying Markov chain. In contrast, the use of multiple Markov chains (i.e. the

Gelman-Rubin Diagnostic from Chapter 1) uses independent chains but each chain

may be too short to overcome the initial bias. Alexopoulos and Goldsman (2004)

investigate this issue for general processes and conclude that one long run is preferable

for nonstationary processes. With this in mind, we will focus on these techniques,

but further investigation may be warrented for geometrically (or uniformly) ergodic

Markov chains.

A number of other stopping criteria have been proposed based on convergence

diagnostics (Cowles and Carlin, 1996). However, convergence diagnostics have done

little other than confuse practitioners; see Flegal et al. (2008) and Jones et al. (2006).

In general, diagnostics simply ignore the appropriate problem of accurately estimating

σ2
g , and hence we ignore them in this discussion.

Instead, we will focus on two main approaches to stopping an MCMC simulation,

fixed-length methods and fixed-width methods.

Fixed-Length Approach

The simplest approach to stopping an MCMC simulation is to run a single chain for

a fixed number of iterations then use ḡn to estimate Eπg. Practitioners using this

approach should report the resulting MCSE to allow the reader to infer the accuracy

of the estimate. Hence, estimating σ2
g is required. Suppose we can construct an

estimator, say σ̂2
n, such that σ̂2

n is mean-square consistent, or as n→∞

MSE(σ̂2
n) := Eπ(σ̂2 − σ2

g)
2 → 0 . (3.3)
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Damerdji (1995) establishes (3.3) for general stationary processes. Section 3.2.3 spe-

cializes this work to MCMC and addresses errors from Damerdji (1995).

Given potential estimators of σ2
g , we can use (3.3) to choose nuisance parameters

to minimize the asymptotic mean-square error (MSE). Song and Schmeiser (1995)

propose one such approach to batch size selection for general stationary processes;

Section 3.2.3 considers this in the context of MCMC.

Fixed-Width Methods

Suppose we have an idea of the level of accuracy we want in our estimate, ḡn. For

example, suppose we want to report estimates with three significant figures. One way

of achieving this goal is through evaluation of the Monte Carlo error.

Assessing the Monte Carlo error is usually accomplished by appealing to a Markov

chain CLT (Theorem 2). Then one can calculate an estimate of the MCSE of ḡn, say

σ̂n/
√
n and form a confidence interval for Eπg. If this interval is too large, then the

value of n is increased and simulation continues until the interval is sufficiently small.

The half-width of the interval is given by

t∗
σ̂n√
n
< ε (3.4)

where t∗ is an appropriate quantile and ε > 0 is the user-specified half-width.

Not knowing ahead of time the number of iterations necessary to ensure the desired

precision, the method requires a sequential approach where the chain will be run for

a random number of iterations. The theoretical justification of this method requires

a strongly consistent estimator of σ2
g . Specifically, an estimator is strongly consistent

if with probability one,

σ̂2
n → σ2

g as n→∞ . (3.5)

We can use σ̂2
n to form an asymptotically valid confidence interval for Eπg or use it to
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implement the fixed-width methods for stopping the simulation introduced in Glynn

and Whitt (1992) for general processes and in MCMC by Jones et al. (2006).

Remark 2. In general, both (3.3) and (3.5) imply convergence in probability, but

mean-square consistency and strong consistency do not in general imply one another.

3.2 Variance Estimation

Estimating σ2
g in (3.2) requires specialized techniques that take into account the

dependence in the observed Markov chain. Many methods have been proposed to

estimate σ2
g , including non-overlapping batch means (BM), overlapping batch means

(OBM), spectral variance methods (SV), and regenerative simulation (RS); see Fish-

man (1996) for an overview. These methods all have advantages and disadvantages.

For example, RS will produce an estimator satisfying (3.5) under the conditions guar-

anteeing (3.2), however, implementing RS typically requires additional theoretical

work. Some common ways of implementing BM and OBM lead to estimators that

are demonstrably not consistent (Glynn and Iglehart, 1990; Glynn and Whitt, 1991)

thus some authors encourage caution in their use; see Roberts (1996). On the other

hand, both BM and OBM are simple to implement but OBM has the reputation for

being more efficient that BM. SV methods are also easy to implement, however they

have received limited attention in MCMC settings.

In our theoretical work, we focus on conditions which guarantee (3.5) for SV and

OBM estimators. These estimators are closely connected since it is well known (An-

derson, 1984; Meketon and Schmeiser, 1984) that OBM is, aside from the end-effect

terms, equal to a spectral variance estimator with the modified Bartlett lag window.

This has also been addressed by Damerdji (1994) but our regularity conditions are

weaker. Further, in BM and OBM, batch size selection is still an open research

problem. Song and Schmeiser (1995) propose an approach that minimizes the mean-
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squared error in (3.3) with a certain rate of convergence. We will show the estimators

of σ2
g using BM and OBM are mean-square consistent. Under additional conditions,

we show the “optimal” batch size in terms of MSE is proportional to n1/3. However,

we will show that it is impractical to use this result in finite sample settings.

3.2.1 Notation and Assumptions

Throughout this thesis, the symbol “O” will represent the usual big-O notation and

the symbol “o” will represent the usual little-o notation. Suppose f(n) and g(n) are

functions defined on R. Formally, if f(n) = O (g(n)), then there exists an n0 and

M > 0 such that |f(n)| ≤ M |g(n)| for all n > n0. Further, if f(n) = o (g(n)), then

for any M > 0 there exists an n0 such that |f(n)| < M |g(n)| for all n > n0.

Either geometric or uniform ergodicity along with a moment condition on g will

ensure a Markov chain CLT in (3.2) (Jones, 2004; Roberts and Rosenthal, 2004). How-

ever, throughout this discussion we will require a different asymptotic property, specif-

ically a strong invariance principle which is now described. Let B = {B(t), t ≥ 0}

denote a standard Brownian motion. A strong invariance principle holds if there

exists a nonnegative increasing function ψ(n) on the positive integers, a constant

0 < σg <∞, and a sufficiently rich probability space such that∣∣∣∣∣
n∑

i=1

g(Xi)− nEπg − σgB(n)

∣∣∣∣∣ = O(ψ(n)) w.p.1 as n→∞ (3.6)

where the w.p.1 in (3.6) means for almost all sample paths ω ∈ Ω. Alternatively,

(3.6) can be expressed as there exists n0 and a finite random variable C such that for

almost all sample paths ω ∈ Ω of the process,∣∣∣∣∣
n∑

i=1

Yi − nEπg − σgB(n)

∣∣∣∣∣ < C(ω)ψ(n) (3.7)
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for all n > n0. A strong invariance principle is enough to guarantee both (3.1) and

(3.2) among other properties; see Philipp and Stout (1975) and Damerdji (1991). Of

course, directly establishing a strong invariance principle may be difficult in practice.

We will rely on the following result first established by Jones et al. (2006) and later

extended by Bednorz and Latuszyński (2007).

Lemma 4. Let g : X 7→ R be a Borel function and let X be a Harris ergodic Markov

chain with invariant distribution π.

1. If X is uniformly ergodic and Eπ|g|2+δ′ < ∞ for some δ′ > 0, then (3.6) holds

with ψ(n) = n1/2−α′ where α′ ≤ δ′/(24 + 12δ′).

2. If X is geometrically ergodic and Eπ|g|2+δ+ε < ∞ for some δ > 0 and some

ε > 0, then (3.6) holds with ψ(n) = nα log n where α = 1/(2 + δ).

3.2.2 Spectral Density Estimation

In this section, we investigate conditions which guarantee strong consistency, i.e.

(3.5), of spectral variance estimators. For a detailed review of spectral analysis in a

time–series context see Anderson (1994) and Priestley (1981).

Define the process Y = {Yi = g(Xi) − Eπg } for i = 1, 2, 3, . . . and Ȳj(k) :=

k−1
∑k

i=1 Yj+i for j = 0, . . . , n − bn and k = 1, . . . , bn. Further define Ȳn := Y1(n) =

n−1
∑n

i=1 Yi. First note that

σ2
g =

∞∑
s=−∞

γ(s)

where γ(s) := Eπ [YtYt+s] = Eπ [(g(Xt)− Eπg)(g(Xt+s)− Eπg)]. This representation

is similar to the spectral density function, or the Fourier transform of the covariance

sequence,

f(φ) =
1

2π

∞∑
s=−∞

γ(s) cos(φs)
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where the parameter φ is the frequency.

Remark 3. General time-series settings may require additional work to establish the

existence of f(φ). Given a Markov chain CLT this quantity is certain to exist and be

finite.

First consider estimating γ(s) using the sample analog of the covariance of lag

s ≥ 0,

γn(s) = n−1

n−s∑
t=1

(Yt − Ȳn)(Yt+s − Ȳn) . (3.8)

If Eπg
2 <∞, then we can appeal to the Ergodic Theorem to show that γn(s) → γ(s)

almost surely for each fixed s as n → ∞. One could then use the sample analog in

(3.8) to estimate f(φ), though this turns out to be a poor estimator (see Anderson,

1994; Bratley et al., 1987). Instead, we will introduce the use of a weight function,

wn(·), commonly called the lag window in the literature. We will restrict our attention

to lag windows fulfilling the following requirements.

Assumption 1. The lag window wn(·) is an even function defined on Z such that

|wn(s)| ≤ 1 for all n and s,

wn(0) = 1 for all n,

wn(s) = 0 for all |s| ≥ bn ,

where bn is the truncation point.

We will also require the following assumption on the truncation point.

Assumption 2. Let bn be an integer sequence such that bn → ∞ and n/bn → ∞ as

n→∞ where bn and n/bn are monotonically nondecreasing.
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Note 2πf(0) =
∑∞

−∞ γ(s) = σ2
g which can be estimated with

2πfn(0) =
bn−1∑

s=−(bn−1)

wn(s)γn(s) . (3.9)

The main result of this section follows.

Theorem 5. Let X be a geometrically ergodic Markov chain with invariant dis-

tribution π and g : X → R be a Borel function with Eπ|g|2+δ+ε < ∞ for some

δ > 0 and ε > 0. Suppose Assumptions 1 and 2 hold and define ∆1wn(k) =

wn(k − 1)−wn(k) and ∆2wn(k) = wn(k − 1)− 2wn(k) +wn(k + 1). Further suppose

(a) bnn
−1
∑bn

k=1 k |∆1wn(k)| → 0 as n → ∞; (b) there exists a constant c ≥ 1 such

that
∑

n(bn/n)c < ∞; (c) b−1
n log n stays bounded as n → ∞; (d) bnn

−1 log n → 0 as

n→∞; (e)

bnn
2α(log n)3

(
bn∑

k=1

|∆2wn(k)|

)2

→ 0 as n→∞, and

n2α(log n)2

bn∑
k=1

|∆2wn(k)| → 0 as n→∞

where α = 1/(2 + δ); and (f) b−1
n n2α log n→ 0 as n→∞. Then

2πfn(0) → σ2
g as n→∞ w.p.1.

Proof. Consider the following quantity,

σ̂2(n) = n−1

n−bn∑
j=0

bn∑
k=1

αn(k)
(
Ȳj(k)− Ȳn

)2
(3.10)

where αn(k) is a sequence of weights. Proposition 3 in Section 3.4.2 shows there exists

a sequence of weights αn(k) := k2∆2wn(k) and a sequence dn due to some end effects,
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such that

σ̂2(n) = 2πfn(0)− dn .

Proposition 7 in Appendix A.1.1 shows σ̃2
∗ → 1 as n→∞ where σ̃2

∗ is the Brownian

motion equivalent of (3.10). Lemma 4 with Lemma 8 show σ̂2(n) − σ2
g σ̃

2
∗ → 0 as

n → ∞. Finally, Lemma 9 with Lemma 10 shows that dn → 0 as n → ∞. Thus,

combining all of these yields the desired result.

Remark 4. It is convenient in applications to take bn = bnνc for some 0 < ν < 1, and

hence (b), (c), and (d) are satisfied.

Lag Windows

Anderson (1994) gives an extensive collection of lag windows satisfying Assumption 1.

In this section, we discuss some of the more popular windows.

The Parzen lag windows, wn(k) = 1− |k|q/bqn for |k| < bn and 0 otherwise where

q > 0. For this type of window, (a) of Theorem 5 reduces to b2nn
−1 → 0 as n→∞ and

(e) requires b1−2q
n n2α(log n)3 → 0 and b−q

n n2α(log n)2 → 0 as n → ∞. The modified

Bartlett lag window is a special case of a Parzen window where q = 1, hence the

result applies.

The Tukey-Hanning window, wn(k) = [1 + cos(πk/bn)] /2 for |k| < bn and 0 oth-

erwise. Then (a) reduces to b2nn
−1 → 0 as n→∞ and (e) requires b−1

n n2α(log n)3 → 0

as n→∞.

In general, (e) requires limbn→∞wn(bn − 1) = 0. Unfortunately, the truncated

periodogram (wn(k) = 1 for |k| < bn and 0 otherwise), the general Blackman-Tukey

window (wn(k) = 1 − 2a + 2a cos(πk/bn) for |k| < bn and 0 otherwise where a is a

positive constant), and the scale-parameter class of lag window functions (wn(k) =

1− δ|k|q/bqn for |k| < bn and 0 otherwise where q and δ are positive constants) do not

generally satisfy this requirement. Damerdji (1991) incorrectly applies his result to
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the latter two windows listed above.

Using a similar proof as Theorem 6 with results from Damerdji (1991, 1994), one

can show the spectral variance estimator is strongly consistent for uniformly ergodic

chains. In this case we need to replace condition (e) with (e’)

bnn
1−2α′(log n)

(
bn∑

k=1

|∆2wn(k)|

)2

→ 0 as n→∞, and

n1−2α′
bn∑

k=1

|∆2wn(k)| → 0 as n→∞

where 0 < α′ ≤ δ′/(24 + 12δ′) and δ′ = δ + ε. It turns out this result is not

very practical when bn = bnνc. Consider using the modified Bartlett or Tukey-

Hanning lag windows. Either of these require b2nn
−1 → 0 as n→∞ and (e’) requires

b−1
n n1−2α′(log n) → 0 as n→∞, but there is no ν value that will satisfy both of these

requirements. Parzen windows with q > 3/2 will satisfy these conditions.

3.2.3 Batch Means

In non-overlapping batch means the output is broken into blocks of equal size. Sup-

pose the algorithm is run for a total of n = anbn iterations and for k = 0, . . . , an − 1

define Ȳk := b−1
n

∑bn

i=1 g(Xkbn+i). The batch means estimate of σ2
g is

σ̂2
BM =

bn
an − 1

an−1∑
k=0

(Ȳk − ḡn)2 . (3.11)

It is well known that generally (3.11) is not a consistent estimator of σ2
g (Glynn and

Iglehart, 1990; Glynn and Whitt, 1991). On the other hand, Jones et al. (2006) show

that if the batch size and number of batches are allowed to increase as the overall

length of the simulation does (e.g., by setting an = bn = bn1/2c) then σ̂2
BM → σ2

g with
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probability one as n→∞.

Proposition 2. (Jones et al., 2006, Proposition 3) Let X be a geometrically ergodic

Markov chain with invariant distribution π and g : X → R be a Borel function with

Eπ|g|2+δ+ε < ∞ for some δ > 0 and ε > 0. Suppose Assumption 2 holds (hence

an →∞ as n→∞) and (a) there exists a constant c ≥ 1 such that
∑

n(bn/n)c <∞;

and (b) b−1
n n2α(log n)3 → 0 as n → ∞ where α = 1/(2 + δ), then as n → ∞,

σ̂2
BM → σ2

g w.p.1.

Proof. Lemma 22 in Appendix A.1.3 shows σ̃2
BM → 1 where σ̃2

BM is the Brownian

motion equivalent to (3.11). From Lemma 4 and Lemma 11 we can conclude σ̂2
BM −

σ2
g σ̃

2
BM → 0 as n→∞, hence the desired result.

Notice that there is no assumption of stationarity, implying that burn-in is not

required to implement BM. Also, Jones et al. (2006) found that the finite sample

properties that can be less desirable than expected, thus we consider OBM.

OBM is just a generalization of BM but it is also well known that the OBM

estimator is equal, except for some end-effect terms, to the SV estimator arising from

the modified Bartlett lag window–a relationship we will exploit later. Note that there

are n − bn + 1 batches of length bn indexed by k running from 0 to n − bn. OBM

averages across all batches. Its estimate of σ2
g is

σ̂2
OBM =

nbn
(n− bn)(n− bn + 1)

n−bn∑
j=0

(Ȳj(bn)− Ȳn)2 , (3.12)

where bn is the batch length previously defined. The next result establishes strong

consistency of the OBM estimator.

Theorem 6. Let X be a geometrically ergodic Markov chain with invariant distribu-

tion π and g : X → R be a Borel function with Eπ|g|2+δ+ε < ∞ for some δ > 0 and
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ε > 0. Suppose Assumption 2 holds and (a) b2nn
−3/2 → 0 as n→∞; (b) there exists

a constant c ≥ 1 such that
∑

n(bn/n)c < ∞; and (c) b−1
n n2α(log n)3 → 0 as n → ∞

where α = 1/(2 + δ), then as n→∞, σ̂2
OBM → σ2

g w.p.1.

Proof. The proof is similar to the proof of Theorem 5 with the modified Bartlett

lag window. Specifically, if wn(k) = 1 − |k|/bn for |k| < bn and 0 otherwise, then

αn(bn) = bn and αn(k) = 0 for all k = 1, 2, . . . , bn− 1. Furthermore, (3.10) reduces to

σ̂2(n) = bnn
−1

n−bn∑
j=0

(
Ȳj(bn)− Ȳn

)2
(3.13)

which is asymptotically equivalent to (3.12).

It suffices to show that σ̂2(n) → σ2
g w.p.1. To this end Lemma 4 with Lemma 8

show σ̂2(n)−σ2
g σ̃

2(n) → 0 as n→∞ where σ̃2(n) is the Brownian motion equivalent

of (3.13). (With the modified Bartlett window
∑bn

k=1 |∆2wn(k)| = b−1
n , hence (3.26)

and (3.27) from Lemma 8 are satisfied if b−1
n n2α(log n)3 → 0 as n→∞.) Proposition 8

in Appendix A.1.2 shows σ̃2(n) → 1 completing the proof.

Remark 5. An alternative proof of Theorem 6 follows from Theorem 5 with the

modified Bartlett lag window. However, this requires the use of Lemma 10 making

condition (a) of Theorem 5 necessary. Specifically, the modified Bartlett window

results in
∑bn

k=1 k |∆1wn(k)| = (bn + 1)/2 and condition (a) requires b2nn
−1 → 0 as

n→∞.

Corollary 1. Let X be a geometrically ergodic Markov chain with invariant distri-

bution π and g : X → R be a Borel function with Eπ|g|2+δ+ε <∞ for some δ > 0 and

ε > 0. If bn = bnνc where 3/4 > ν > (1 + δ/2)−1, then σ̂2
OBM → σ2

g w.p.1.

Remark 6. Damerdji (1994) and Jones et al. (2006) show σ̂2
BM is strongly consistent

for uniformly and geometrically ergodic chains respectively under nearly the same
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conditions as required for Theorem 6. Specifically, Proposition 2 shows if bn = bnνc,

then strong consistency requires 1 > ν > (1 + δ/2)−1 > 0 for δ > 0 resulting in less

stringent regularity conditions than those required in Theorem 6.

Mean-Square Consistency

We turn our attention to showing that BM and OBM estimators are consistent in the

mean-square sense, i.e. (3.3). Let σ̂2 be an estimator of σ2
g and assume that X1 ∼ π

so that X is stationary in this subsection. Recall that strong consistency and mean-

square consistency do not imply each other, hence we can not appeal to the results

in the previous section.

Establishing (3.3) for σ̂2
BM is a well studied problem in the operations research

literature, see Chien et al. (1997) for an overview. For geometrically ergodic Markov

chains where Assumption 2 holds and Eπg
4 <∞, Song and Schmeiser (1995) show

bnBias
[
σ̂2
]

= Γ + o (1) , (3.14)

where σ̂2 is the estimator from BM or OBM and Γ := −2
∑∞

s=1 sγ(s). Chien et al.

(1997) show that Γ is well defined for geometrically ergodic chains if Eπg
2 < ∞.

Under the additional condition that Eπg
12 <∞, Chien et al. (1997) further show

n

bn
Var(σ̂2

BM) = 2σ4
g + o (1) . (3.15)

Combining (3.14) and (3.15) imply (3.3) for σ̂2
BM .

We will establish conditions for (3.3) where σ̂2 is σ̂2
BM or σ̂2

OBM under a less

stringent moment condition on g.

Theorem 7. Let X be a geometrically ergodic Markov chain with invariant distribu-

tion π and g : X → R be a Borel function with Eπ|g|2+δ+ε < ∞ for some δ ≥ 2 and
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ε > 0. Suppose Assumption 2 holds and EπC
4 < ∞ where C is defined in (3.7). If

b−1
n n2α(log n)3 → 0 as n → ∞ where α = 1/(2 + δ), then MSE(σ̂2) → 0 as n → ∞

for BM and OBM.

Remark 7. The proof of Theorem 7 with results in Damerdji (1995) shows that the

conclusions also hold for uniformly ergodic chains. The resulting condition on bn

requires b−1
n n1−2α′(log n) → 0 as n→∞ where α′ ≤ δ′/(24 + 12δ′) and δ′ = δ + ε.

Optimal Batch Sizes in Terms of MSE

In this section, we will use the previous results to calculate “optimal” batch sizes.

Chien et al. (1997) and Song and Schmeiser (1995) study the case of BM. Combining

(3.14) and (3.15) yields

MSE(σ̂2
BM) =

Γ2

b2n
+

2bnσ
4
g

n
+ o

(
1

b2n

)
+ o

(
bn
n

)
.

It is easy to use the above expression to see that MSE(σ̂2
BM) will be minimized

asymptotically by selecting the “optimal” batch size of

b̂∗ :=

(
Γ2n

σ4
g

)1/3

.

Notice that this optimal batch size is dependent on Γ2/σ4
g which is an unknown

parameter relating to the process. However, this result implies that the optimal

batch size should increase proportional to n1/3.

The main result of this section follows.

Theorem 8. Let X be a geometrically ergodic Markov chain with invariant distribu-

tion π and g : X → R be a Borel function with Eπ|g|2+δ+ε < ∞ for some δ ≥ 2 and

ε > 0. Suppose Assumption 2 holds and EπC
4 < ∞ where C is defined in (3.7). If
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b−1
n n1/2+α(log n)3/2 → 0 as n→∞ where α = 1/(2 + δ), then

n

bn
Var(σ̂2) = cσ4

g + o (1) . (3.16)

where c = 2 for BM and c = 4/3 for OBM.

Remark 8. If bn = bnνc, the result here for geometrically ergodic chains allows ν ∈

(1/2 + α, 1).

Remark 9. The proof of Theorem 8 coupled with results from Damerdji (1995) can be

applied to uniformly ergodic Markov chains. Specifically, the condition on bn would

be changed to b−1
n n1−α′(log n)1/2 → 0 as n → ∞ where α′ ≤ δ′/(24 + 12δ′) and

δ′ = δ+ ε. However, if bn = bnνc, the best we can do is ν ∈ (11/12, 1), and hence the

result is not very useful.

Combining (3.14) and (3.16) yields

MSE(σ̂2
OBM) =

Γ2

b2n
+
cbnσ

4
g

n
+ o

(
1

b2n

)
+ o

(
bn
n

)
,

which will be minimized asymptotically by selecting the “optimal” batch size of

b̂∗ :=

(
2Γ2n

cσ4
g

)1/3

.

Remark 10. Selecting bn = dn1/3 where d is a constant will not satisfy the necessary

conditions of Theorem 8. Specifically, if bn = bnνc then Theorem 8 requires ν ∈

(1/2+α, 1). Since the function is increasing around b̂∗, we could select ν = 1/2+α+ε

where ε > 0.
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OBM versus BM

Comparing the results for OBM and BM, we can see that the regularity conditions

necessary to ensure strong consistency and mean-square consistency for OBM are

more stringent. For strong consistency, OBM requires b2nn
−3/2 → 0 as n → ∞ while

there is no such requirement to implement BM. In the case of a typical sampling plan

where bn = bnνc for some 0 < ν < 1, OBM results in a smaller range of choices for

ν. In fact, we require ν < 3/4 to implement OBM resulting in a higher necessary

moment condition on g. For mean-square consistency with OBM, we must appeal

to Theorems 7 and 8, and hence a moment condition on C which is not required in

Chien et al. (1997) and Song and Schmeiser (1995).

Under this additional restriction, why should one use OBM? Originally argued by

Meketon and Schmeiser (1984), σ̂2
OBM has a lower asymptotic variance compared to

σ̂2
BM . Looking closely at (3.16) yields

Var(σ̂2
OBM)

Var(σ̂2
BM)

→ 2

3

as n→∞. Welch (1987) argues that most of this benefit can be achieved by a modest

amount of overlapping. For example, using a batch of size 64 and splitting the batch

into 4 sub-batches, then it is only necessary to consider the overlapping batches (of

length 64) starting at X1, X17, X33, X49, X65, . . . This modification is meant to reduce

computational time required. This could also reduce necessary memory if one used a

sampling plan such that bn was restricted to values such that bn = 2k for k = 0, 1, . . .

3.2.4 Regeneration

Regeneration techniques are another method to ensure strongly consistent estimators

of σ2
g (Hobert et al., 2002). Suppose the Markov chain transition kernel P satisfies

the minorization condition in (2.4) on some set C with π(C) > 0. As we saw in
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Section 2.4.2, then P can be rewritten as a mixture of two transition kernels

P (x, dy) = s(x)Q(dy) + (1− s(x))R(x, dy) , (3.17)

where s(x) : X → [0, 1]. Then for each x ∈ C the residual kernel is

R(x, dy) =
P (x, dy)− s(x)Q(dy)

1− s(x)
for s(x) < 1 ,

and R(x, ·) := 0 for s(x) = 1.

Instead of using P exclusively to simulate the next step in the Markov chain, the

mixture density in (3.17) can be incorporated as follows. Suppose the current state

is Xi = x.

1. If x ∈ C, generate δi ∼ Bernoulli (s(x)) then

(a) if δi = 0, generate Xi+1 ∼ R(x, ·);

(b) if δi = 1, generate Xi+1 ∼ Q(·).

2. If x /∈ C generate Xi+1 ∼ P (x, ·) and δi = 0.

Notice that if δi = 1, the subsequent draw from Q(·) is independent of the current

state, hence the chain regenerates. Suppose we can start the chain with a draw

from Q(·), then every time δi = 1 the next step i + 1 is a regeneration time since

Xi+1 is drawn from Q(·) starting the process over. These tours of the Markov chain

are i.i.d., meaning standard techniques can be used to establish an alternative CLT,

and hence a simple method to estimate the asymptotic variance.

Furthermore, we can avoid drawing from Q(·) entirely by changing the order

slightly. Suppose x is the current state, then we can simply generate Xi+1 ∼ P (x, ·)

in the usual manner. Then if x ∈ C, we can generate δi|Xi, Xi+1. Nummelin (1984,
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p. 62) notes that

Pr (δi|Xi, Xi+1) =
s(Xi)q(Xi+1)

k(Xi+1|Xi)
,

where q(·) and k(·|x) are the densities corresponding to Q(·) and P .

Using the structure above, we now explain how to calculate a consistent estimator

of the asymptotic variance. Suppose X1 ∼ Q(·) and that the Markov chain is run for

R regenerations, or tours. In other words, the simulation is run until the Rth time

that δi = 1. Further suppose 0 = τ0 < τ1 < τ2 < · · · < τR are the random regeneration

times (τi := min {i > τi− 1 : δi−1 = 1}) and N1, N2, . . . , NR are the random lengths

of the tours (Ni := τi − τi−1). If we define

Si =

τi−1∑
j=τi−1

g(Xj) ,

then the (Ni, Si) are i.i.d. and the resulting strongly consistent estimator of Eπg is

ḡτR
:=

S̄

N̄
=

1

τR

τR−1∑
j=0

g(Xj)

where S̄ = R−1
∑R

i=1 Si and N̄ = R−1
∑R

i=1Ni. If the underlying Markov chain is

geometrically ergodic and Eπ|g|2+ε <∞ for some ε > 0, then

R1/2 (ḡτR
− Eπg)

d→ N(0, σ2
R) (3.18)

as R → ∞. Using this alternative CLT, Hobert et al. (2002) show that there exists

an easily computed strongly consistent estimator of σ2
R defined as

σ̂2
R =

∑R
i=1 (Si − ḡτR

Ni)
2

RN̄2
.

Remark 11. Notice that the CLT from (3.2) is different from the CLT in (3.18).
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Specifically, Hobert et al. (2002) show that σ2
R = σ2

gEπs.

3.3 Examples

In this section, we investigate the finite sample properties in two examples to compare

BM, OBM, RS, and SV. First, we examine the AR(1) model and assess the “optimal”

batch size selection. Next, we examine a more realistic Bayesian probit regression

model and compare our methods to RS. The finite sample properties for the competing

methods will be evaluated based on the length and coverage probabilities of confidence

intervals.

3.3.1 AR(1) Model

Recall the first order autoregressive process introduced in Chapter 2,

Xi = ρXi−1 + εi for i = 1, 2, . . . ,

where εi is an i.i.d. N(0,τ 2) for i = 1, 2, . . . . We have previously shown that this

chain is geometrically ergodic if |ρ| < 1. This is a well studied problem where it is

easy to show that π ∼ N (0, τ 2/(1− ρ2)), and hence EπX = 0 and Eπ |X|d < ∞

for all d < ∞. Thus we can appeal to a CLT, strong consistency, and mean-square

consistency results. In addition, we can show covπ{X0, Xi} = τ 2ρi/(1 − ρ)2 and

σ2
g = τ 2/(1 − ρ)2. The usefulness of this example is that we can easily control the

correlation between iterations to make estimation arbitrarily hard.

Consider estimating EπX with x̄n and calculating a confidence interval for the

resulting estimate. Using the CLT in (3.2), we can calculate the interval

x̄n ± t∗
σ̂√
n
, (3.19)
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Figure 3.1: Plot of σ̂ versus the number of iterations in the chain using BM, OBM,
TH, and Brt for the AR(1) model with ν = 1/2. The solid black lines represent the
actual values of σg.

where t∗ is the appropriate critical value and σ̂ is an estimate for σ2
g . We will use

multiple replications and the known value of EπX to evaluate BM, OBM, and SV

by examining the coverage probabilities of intervals in (3.19). For SV estimators, we

will use the Tukey-Hanning window (TH) and Bartlett window (Brt). For BM the

degrees of freedom for t∗ are an−1 and for OBM, TH, and Brt the degrees of freedom

for t∗ are n− bn.

We consider τ 2 = 1 for the white noise in the AR(1) model and start from X1 = 0.

We considered two different autocorrelations, ρ = {0.5, 0.95}.

Consider the case with ρ = 0.5 and bn = bnνc where ν = 1/2. Here the auto-

correlation is relatively low resulting in the relative ease in which we can estimate

σg = 2. Figure 3.1a shows a plot of σ̂ versus the number of iterations in the chain

using BM, OBM, TH, and Brt. This plot is based on one realization of a chain of

length 1e5, but multiple replications result in similar conclusions. We can see that

for small numbers of iterations, the estimates for all the methods are biased down.



80 Chapter 3. Monte Carlo Error

Number of Iterations
Method bn = 1e3 5e3 1e4 5e4 1e5

BM

bn1/3c

0.9315 0.939 0.937 0.942 0.943
Brt 0.93 0.9395 0.936 0.9415 0.944

OBM 0.9305 0.9395 0.936 0.942 0.944
TH 0.936 0.9465 0.9395 0.9465 0.947
BM

bn1/2c

0.9415 0.948 0.939 0.947 0.949
Brt 0.933 0.946 0.935 0.947 0.9475

OBM 0.9385 0.947 0.9355 0.9475 0.9475
TH 0.9365 0.9465 0.9365 0.948 0.948
BM

bn2/3c

0.9475 0.9445 0.9385 0.95 0.9465
Brt 0.9105 0.9265 0.9275 0.9445 0.9425

OBM 0.9245 0.935 0.932 0.947 0.944
TH 0.9115 0.927 0.927 0.9435 0.9425

Table 3.1: Table of coverage probabilities for 2000 replications using the AR(1) ex-
ample with ρ = 0.5. All calculations were based on the nominal level of 0.95. The
standard errors for these numbers are easily calculated as

√
p̂(1− p̂)/2000 which

results in a largest standard error of 6.4e-3.

However, after a sufficient number of iterations (∼ 20, 000) all of the methods seem

to provide good estimates for σg. Figure 3.1b shows the case where ρ = 0.95 and

ν = 1/2 resulting in σg = 20. Estimating σg here is much more difficult because of

the high autocorrelation. We can see that the estimates using all of our methods are

biased down even after 100,000 iterations (and much longer in some runs) though TH

seems to perform better than the other three.

Next, we wish to compare different batch sizes and variance estimation techniques

using finite samples. Using a single chain, σg was estimated at five different points

(at 1e3, 5e3, 1e4, 5e4, and 1e5 iterations) using each BM, OBM, Brt, and TH with

three different sampling plans, bn = bnνc where ν = {1/3, 1/2, 2/3}. Here, the

calculations for one replication were done using same chain eliminating the effect of

different random numbers. Using each setting, a confidence interval for EπX was

calculated. To asses the performance of each method, this procedure was repeated



3.3. Examples 81

Number of Iterations
Method bn = 1e3 5e3 1e4 5e4 1e5

BM

bn1/3c

0.115 (1.8e-4) 0.0534 (4.9e-5) 0.038 (2.8e-5) 0.0172 (7.4e-6) 0.0122 (4.1e-6)
Brt 0.114 (1.5e-4) 0.0531 (4.3e-5) 0.0379 (2.4e-5) 0.0172 (6.2e-6) 0.0122 (3.4e-6)

OBM 0.114 (1.6e-4) 0.0532 (4.3e-5) 0.0379 (2.4e-5) 0.0172 (6.2e-6) 0.0122 (3.4e-6)
TH 0.117 (1.6e-4) 0.0544 (4.4e-5) 0.0387 (2.5e-5) 0.0175 (6.5e-6) 0.0124 (3.6e-6)
BM

bn1/2c

0.125 (3.6e-4) 0.0556 (1e-4) 0.0394 (6.4e-5) 0.0176 (1.9e-5) 0.0124 (1.1e-5)
Brt 0.119 (2.8e-4) 0.0544 (8.2e-5) 0.0387 (5e-5) 0.0174 (1.5e-5) 0.0124 (9.1e-6)

OBM 0.121 (2.9e-4) 0.0548 (8.3e-5) 0.0389 (5e-5) 0.0175 (1.5e-5) 0.0124 (9.1e-6)
TH 0.121 (3e-4) 0.0549 (8.7e-5) 0.039 (5.2e-5) 0.0175 (1.6e-5) 0.0124 (9.7e-6)
BM

bn2/3c

0.139 (7.3e-4) 0.0591 (2.3e-4) 0.0412 (1.5e-4) 0.018 (4.8e-5) 0.0127 (3e-5)
Brt 0.116 (4.7e-4) 0.0533 (1.6e-4) 0.0379 (1.1e-4) 0.0173 (3.7e-5) 0.0123 (2.3e-5)

OBM 0.121 (5.2e-4) 0.0548 (1.7e-4) 0.0388 (1.1e-4) 0.0175 (3.8e-5) 0.0124 (2.4e-5)
TH 0.116 (5e-4) 0.0534 (1.7e-4) 0.0379 (1.1e-4) 0.0173 (3.9e-5) 0.0123 (2.5e-5)

Table 3.2: Table of mean confidence interval half-widths with standard errors for 2000
replications using the AR(1) example with ρ = 0.5.

Number of Iterations
Method bn = 1e3 5e3 1e4 5e4 1e5

BM

bn1/3c

0.614 0.738 0.766 0.842 0.872
Brt 0.606 0.736 0.764 0.841 0.871

OBM 0.61 0.736 0.764 0.842 0.872
TH 0.61 0.74 0.77 0.854 0.886
BM

bn1/2c

0.838 0.903 0.9155 0.94 0.9425
Brt 0.807 0.893 0.911 0.9365 0.9385

OBM 0.821 0.895 0.913 0.937 0.9395
TH 0.822 0.9055 0.9235 0.943 0.945
BM

bn2/3c

0.927 0.9385 0.933 0.948 0.9465
Brt 0.872 0.916 0.9185 0.944 0.942

OBM 0.89 0.925 0.924 0.9455 0.943
TH 0.885 0.92 0.924 0.9435 0.9425

Table 3.3: Table of coverage probabilities for 2000 replications using the AR(1) ex-
ample with ρ = 0.95. All calculations were based on the nominal level of 0.95. The
standard errors for these numbers are easily calculated as

√
p̂(1− p̂)/2000 which

results in a largest standard error of 0.011.
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Number of Iterations
Method bn = 1e3 5e3 1e4 5e4 1e5

BM

bn1/3c

0.544 (1.4e-3) 0.319 (3.9e-4) 0.244 (2.2e-4) 0.129 (6.3e-5) 0.0973 (3.5e-5)
Brt 0.536 (1.3e-3) 0.317 (3.9e-4) 0.243 (2.2e-4) 0.129 (6.2e-5) 0.0973 (3.5e-5)

OBM 0.539 (1.4e-3) 0.318 (3.9e-4) 0.244 (2.2e-4) 0.129 (6.2e-5) 0.0973 (3.5e-5)
TH 0.54 (1.3e-3) 0.322 (3.9e-4) 0.247 (2.2e-4) 0.132 (6.1e-5) 0.0999 (3.4e-5)
BM

bn1/2c

0.883 (2.9e-3) 0.478 (8.9e-4) 0.355 (5.7e-4) 0.168 (1.8e-4) 0.121 (1.1e-4)
Brt 0.835 (2.6e-3) 0.467 (8.3e-4) 0.349 (5.1e-4) 0.167 (1.6e-4) 0.12 (9.3e-5)

OBM 0.854 (2.7e-3) 0.471 (8.4e-4) 0.351 (5.2e-4) 0.167 (1.6e-4) 0.12 (9.3e-5)
TH 0.855 (2.6e-3) 0.482 (8.3e-4) 0.361 (5.1e-4) 0.172 (1.6e-4) 0.123 (9.6e-5)
BM

bn2/3c

1.24 (6.7e-3) 0.57 (2.2e-3) 0.403 (1.4e-3) 0.179 (4.8e-4) 0.127 (3e-4)
Brt 1.01 (4.8e-3) 0.514 (1.7e-3) 0.371 (1.1e-3) 0.171 (3.7e-4) 0.122 (2.3e-4)

OBM 1.07 (5.3e-3) 0.529 (1.8e-3) 0.38 (1.1e-3) 0.174 (3.8e-4) 0.123 (2.4e-4)
TH 1.05 (4.9e-3) 0.527 (1.7e-3) 0.377 (1.1e-3) 0.172 (3.9e-4) 0.123 (2.5e-4)

Table 3.4: Table of mean confidence interval half-widths with standard errors for 2000
replications using the AR(1) example with ρ = 0.95.

for 2000 independent replications recording the resulting coverage probabilities and

confidence interval lengths.

The results from this simulation with ρ = 0.5 are in Table 3.1. In the calculations

with ν = 1/3 and ν = 1/2, all of the calculated coverage probabilities are within 2

standard errors of the nominal .95 level when at least 5e3 iterations are used. We can

also see that for all the settings, the coverage probabilities improve as the number of

iterations increase. The choice of ν = 2/3 seems to slightly underestimate the coverage

probabilities for small numbers of iterations. Examining the mean confidence interval

length in Table 3.2, it is no surprise that the lengths decrease for all of the settings as

the number of iterations increase. All of the methods produce similar interval lengths,

however, they are slightly longer using BM as a result of the selection of t∗. This is

clearly magnified when ν = 2/3 and there is a smaller number of batches. In general,

when ρ = 0.5 the problem is relatively easy, and all the methods and settings seem

to perform well.

Consider the more difficult problem of ρ = 0.95. Table 3.3 shows the calculated

coverage probabilities. We can see the coverage probabilities get closer to the nominal

.95 level as the number of iterations increases. We can also see that as the ν increases
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the confidence intervals become more accurate because the strong correlation in the

model is better captured with larger batch sizes. In this case, the choice of ν = 1/3

performs much worse than the other options analyzed. For ν = 2/3, BM performs

better in terms of coverage probabilities but results in longer confidence intervals (see

Table 3.4). Again, this is a result of the selection of t∗ for BM.

3.3.2 Bayesian Probit Regression

Suppose Y1, . . . , Ym are independent Bernoulli random variables with Pr(Yi = 1) =

Φ(xT
i β) where xi is a p × 1 vector of known covariates associated with Yi, β is a

p×1 vector of unknown regression coefficients, and Φ(·) denotes the standard normal

distribution function. Then for yi ∈ {0, 1}

Pr(Y1 = y1, . . . , Yn = ym|β) =
m∏

i=1

Φ(xT
i β)yi

[
1− Φ(xT

i β)
]1−yi

.

Bayesian inference on β with a flat prior (p-dimensional Lebesgue measure) is common

resulting in

π(β|y) ∝
m∏

i=1

Φ(xT
i β)yi

[
1− Φ(xT

i β)
]1−yi

,

which under regularity conditions is proper (Roy and Hobert, 2007).

We will sample from π(β|y) using the PX-DA algorithm of Liu and Wu (1999).

First, let TN(µ, σ2, w) denote a normal distribution with mean µ and variance σ2 that

is truncated to be positive if w = 1 and negative if w = 0. The procedure requires:

1. Draw z1, . . . , zm independently with zi ∼ TN(xT
i β, 1, yi).

2. Draw g2 ∼ Γ
(

n
2
, 1

2

∑m
i=1

[
zi − xT

i (XTX)−1XT z
]2)

and set z′ = (gz1, . . . , gzm)T .

3. Draw β′ ∼ N
(
(XTX)−1XT z′, (XTX)−1

)
.
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β̂i σ̂βi
MCSE

β0 −3.0192 11.830 0.004
β1 6.9136 22.654 0.008
β2 3.9804 14.765 0.005

Table 3.5: Results from 9e6 iterations for the Bayesian probit regression using the
Lupus data from van Dyk and Meng (2001). These values were treated as the “truth”
for estimating confidence interval coverage probabilities.

We will use the general framework above to analyze the Lupus Data from van Dyk

and Meng (2001). The goal of this example is to predict the occurrence of latent

membranous lupus nephritis using xi1, the difference between IgG3 and IgG4 (im-

munoglobulin G), and xi2, IgA (immunoglobulin A). The response variable is yi, an

indicator of the disease (1 for present). We consider the a Bayesian analysis using a

flat prior of the following model

Pr(Yi = 1) = Φ (β0 + β1xi1 + β2xi2) .

Hence, we are interested in estimating the regression parameters β := (β0, β1, β2).

Chen and Shao (2001) show conditions to ensure the appropriate moment condi-

tions for estimating the posterior expectation of the regression parameters, β. Roy

and Hobert (2007) verify these conditions and show conditions to ensure the chain is

geometrically ergodic.

In the following sections, we will attempt to compare different methods based on

their coverage probabilities. However, this requires the actual value of β which can

never be known in a real example such as this. In an attempt to solve this problem,

we will calculate a very precise estimate of β from one long run, and treat this as the

“truth” when evaluating confidence intervals in future sections. Table 3.5 shows the

calculated values from one long run of 9e6 iterations. MCSEs were calculated using

BM with a batch size of n1/2.
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Fixed-Width Methods

Suppose we want to estimate the three parameters of interest to within ±0.25. To

this end, we will use the fixed-width methods outlined by Jones et al. (2006). In this

example, the first confidence interval will be calculated at 1e4 iterations in the chain.

If the maximum half-width was greater than 0.25, then 1000 iterations were added

to the chain before checking again. Formally, a simulation was terminated when

t∗
σ̂√
n

+ 0.25I(n < 10000) < 0.25

where t∗ is the appropriate critical value and σ̂ is an estimate for σg. Ensuring the

resulting confidence intervals are asymptotically valid requires a strongly consistent

estimator of σ2
g . We have shown conditions that result in strongly consistent estima-

tors using BM, OBM, Brt, and TH. The goal in this section, is to compare coverage

probabilities and confidence interval lengths for each combination of BM, OBM, Brt,

and TH used to estimate σ2
g with sampling plans, bn = bnνc where ν = {1/3, 1/2}.

The simulations were started from the maximum likelihood estimate of β given by

β̂ = (−1.778, 4.374, 2.482). To estimate the coverage probabilities and interval lengths

in this example, we ran 1000 independent replications of the procedure outlined above.

Table 3.6 shows the calculated coverage probabilities for β, mean number of iterations

at termination, and mean confidence interval lengths for each method.

With ν = 1/3, the results are terrible with any estimate σ2
g . With the smaller

truncation point (or batch size), the estimates are not capturing enough of the corre-

lation in the chain. We can also see that all of the simulations stop very early, most

with 10,000 or 11,000 iterations in the chain resulting poor estimates of β.

With ν = 1/2, all of the methods result in coverage probabilities slightly lower than

the nominal 0.95 level. It also appears that using TH results in slightly better coverage

probabilities while this method requires slightly more simulation effort. The lengths
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β BM Brt OBM TH

bn =
bn1/3c

Coverage
Probability

β0 0.742 0.733 0.730 0.742
β1 0.739 0.738 0.735 0.742
β2 0.739 0.727 0.726 0.741

N - 1.1e4 (32) 1.07e4 (29) 1.08e4 (29) 1.1e4 (32)

C.I. Length
β0 0.128 0.128 0.128 0.128
β1 0.243 0.242 0.242 0.243
β2 0.160 0.159 0.159 0.160

bn =
bn1/2c

Coverage
Probability

β0 0.929 0.927 0.932 0.936
β1 0.921 0.921 0.923 0.936
β2 0.924 0.927 0.929 0.930

N - 2.68e4 (99) 2.66e4 (94) 2.68e4 (95) 2.86e4 (97)

C.I. Length
β0 0.129 0.130 0.130 0.130
β1 0.245 0.247 0.247 0.247
β2 0.160 0.162 0.162 0.162

Table 3.6: Summary of results for using fixed-width methods for the Lupus data
Bayesian probit regression. Coverage probabilities using calculated half-width have
MCSEs of 1.4e-2 when bn = bn1/3c and between 7.7e-3 and 8.5e-3 when bn = bn1/2c.
The table also shows the mean simulation effort at termination in terms of number
of iterations. The mean confidence interval lengths reported all have MCSEs below
2e-4.

of the resulting half-widths showed virtually no difference between the methods.

Bonferonni Correction

Until this point, we have examined the performance of multiple confidence intervals

individually. Alternatively, this section considers a Bonferonni correction to calculate

simultaneous confidence intervals. As before, the simulation will be run until the

maximum calculated half-width is below 0.25. However, instead of using nominal

95% confidence intervals to decide when to stop the simulation, we will use nominal

98 1/3% confidence intervals. The resulting simultaneous confidence intervals should

have at least nominal 95% coverage based on the Bonferonni correction.

To examine the finite sample properties, we ran 1000 replications of the procedure

outlined in the previous section changing only the critical value used to stop the
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β BM Brt OBM TH

bn =
bn1/3c

Coverage
Probability

β0 0.852 0.847 0.846 0.853
β1 0.847 0.844 0.843 0.847
β2 0.856 0.841 0.843 0.860

Simultaneous β 0.819 0.806 0.807 0.825
N - 1.81e4 (59) 1.75e4 (59) 1.75e4 (59) 1.82e4 (60)

C.I. Length
β0 0.130 0.130 0.130 0.130
β1 0.247 0.247 0.247 0.247
β2 0.162 0.162 0.162 0.162

bn =
bn1/2c

Coverage
Probability

β0 0.974 0.971 0.969 0.977
β1 0.975 0.973 0.972 0.978
β2 0.972 0.971 0.968 0.978

Simultaneous β 0.964 0.961 0.959 0.972
N - 4.08e4 (131) 4.08e4 (125) 4.11e4 (125) 4.37e4 (127)

C.I. Length
β0 0.129 0.130 0.130 0.130
β1 0.245 0.248 0.248 0.248
β2 0.161 0.162 0.162 0.162

Table 3.7: Summary of results for using fixed-width methods with a Bonferonni
correction for the Lupus data Bayesian probit regression. Coverage probabilities using
calculated half-width have MCSEs of between 1.1e-2 and 1.3e-2 when bn = bn1/3c and
between 4.6e-3 and 6.3e-3 when bn = bn1/2c. The table also shows the mean simulation
effort at termination in terms of number of iterations. The mean confidence interval
lengths reported all have MCSEs below 1e-4.

simulation. Table 3.7 shows the calculated coverage probabilities for β, mean number

of iterations at termination, and mean confidence interval lengths for each method.

The resulting coverage probabilities for β0, β1, and β2 have a nominal level of 0.9833

while the resulting nominal simultaneous level is 0.95.

With ν = 1/3, the results have improved but are still poor with any estimate

σ2
g . The simulations ran longer than the minimum values but are still not capturing

enough of the correlation in the chain. With ν = 1/2, all individual confidence

intervals perform well with observed coverage probabilities close to the nominal 0.9833

level. The simultaneous intervals have observed coverage probabilities greater than

the 0.95 nominal level meaning the estimates are correlated. Again, the resulting
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β BM Brt OBM TH RS

Coverage
Probability

β0 0.946 0.944 0.944 0.948 0.940
β1 0.941 0.941 0.941 0.946 0.938
β2 0.952 0.950 0.950 0.955 0.937

C.I. Length
β0 0.027 0.027 0.027 0.028 0.028
β1 0.052 0.052 0.052 0.053 0.053
β2 0.034 0.034 0.034 0.035 0.034

Table 3.8: Coverage probabilities and mean confidence interval lengths comparing
BM, OBM, and SV using 7e5 Iterations to RS. MCSEs vary between 6.6e-3 and 7.7e-
3 for the coverage probabilities and are less that 3e-4 for the mean interval lengths.

half-widths showed virtually no difference.

Comparison to Regeneration

In this section, we will use the same example to compare our methods to RS. Again,

we will compere the methods by looking at the resulting coverage probabilities and

confidence interval length. Roy and Hobert (2007) implement RS for this example

which we use here under identical settings other than the number of regenerations. We

implemented RS starting from the appropriate residual density and ran the simulation

until there were 50 regenerations in the chain. This procedure was repeated 1000 times

resulting in mean simulation effort of 7.12e5 (3200). For an appropriate comparison

in terms of simulation effort, confidence intervals for β were calculated using BM,

OBM, and SV from simulated chains with 7e5 iterations. Again, 1000 replications of

this procedure were done to estimate the coverage probabilities. Table 3.8 shows the

resulting coverage probabilities for β using the “truth” calculated previously and the

mean confidence interval lengths. The results from all the methods are within two

standard errors of the nominal 0.95 level meaning all of the methods provide quality

estimates. In addition, for each βi, the confidence interval lengths were very close for

all methods.
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3.3.3 Summary

In our examples, we consider different estimators of σ2
g . In general, all of the methods

considered resulted in similar performance for a given simulation setting. Recall,

OBM and Brt are asymptotically equivalent and the simulation results show there is

little difference between the two in finite samples. In our experience, Brt (and SV

methods in general) tended to run slightly faster computationally than OBM. The

TH estimator exhibits very similar behavior to OBM and Brt, though there seems

to be a slight improvement in performance. Confirming the theoretical results from

Section 3.2.3, the estimator from BM was more variable than OBM (Figure 3.1). This

result was consistent in both examples in multiple realizations.

Using the Bayesian probit regression model we compared our methods to RS. The

resulting simulation showed all the methods performed very well. The advantage of

RS is that the actual chain does not need to be stored as the simulation progresses.

However, RS requires a considerable theoretical cost that is likely to dissuade a prac-

titioner. The resulting simulation is also dependent on the length of the regeneration

tours which can become very long as the dimension increases (Johnson and Jones,

2008). In contrast, BM, OBM, and SV are relatively simple to implement though they

can require saving the entire chain. Given the current price of computer memory, this

is clearly not the obstacle it was in the past.

The second simulation goal was to investigate the finite sample behavior of differ-

ent batch size selection. Theoretically, we showed that the batch size should increase

at a rate proportional to n1/3 where the proportionality constant is unknown. In our

examples, using bn = bn1/3c seemed to give very poor results because the batch size

or truncation point was too small. In realistic examples with higher correlations, the

larger batch size bn = bn1/2c worked well agreeing with the previous work of Jones

et al. (2006). Our investigation of bn = bn2/3c worked well in high correlation settings,

though for long chains more computational effort was necessary.
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3.4 Proofs and Calculations

3.4.1 Results for Proof of Lemma 4

This proof is contained in Jones et al. (2006) and extended by Bednorz and La-

tuszyński (2007). The first part of the lemma is an immediate consequence of the

Theorem 4.1 of Philipp and Stout (1975) and the fact that uniformly ergodic Markov

chains enjoy exponentially fast uniform mixing (see Chapter 2). The second part

follows from our Lemma 5 and Theorem 2.1 in Csáki and Csörgő (1995).

Lemma 5. Let X be a Harris ergodic Markov chain on X with invariant distribution

π. Assume that (2.4) holds and that X is geometrically ergodic. If Eπ|g|p+δ <∞ for

some p > 0 and δ > 0, then EQN
p
1 <∞ and EQS

p
1 <∞.

Preliminary Results

In the proof of this Lemma 5, we will require two additional Lemmas.

Lemma 6. (Hobert et al., 2002, Lemma 1) Let X be a Harris ergodic Markov chain

and assume that (2.4) holds. Then for any function h : X∞ 7→ R

Eπ|h(X1, X2, . . . )| ≥ cEQ|h(X1, X2, . . . )|,

where c = Eπs.

Proof. For any measurable set A it follows from (2.4) that

π(A) =

∫
X

π(dx)P (x,A) ≥ Q(A)

∫
X

π(dx)s(x) (3.20)

and hence π(·) ≥ cQ(·). Next note that

Eπ|h(X1, X2, . . . )| = Eπ [E {|h(X1, X2, . . . )| | X1}] .
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The inner expectation is a nonnegative function of X1 not depending on the starting

distribution. Thus, we can use (3.20) and the Markov property to obtain

Eπ|h(X1, X2, . . . )| ≥ cEQ [E {|h(X1, X2, . . . )| | X1}] = cEQ|h(X1, X2, . . . )|.

Lemma 7. (Hobert et al., 2002, Lemma 2) Let X be a Harris ergodic Markov chain

and assume that (2.4) holds. If X is geometrically ergodic, then there exists a β > 1

such that Eπβ
τ1 <∞.

Proof. First notice that τ1 = min{i > 0 : (Xi−1, δi−1) ∈ X× {1}}; or just the hitting

time on the set X × {1}. Also note that X and X ′ converge to stationarity at the

exact same rate, consequently, since X is geometrically ergodic, so is X ′. Now let π′

denote the invariant distribution of X ′ and note that a random vector (X, δ) with

distribution π′ satisfies X ∼ π(·), and, conditional on X, δ|X ∼ Bernoulli(s(X)).

Thus π′(X × {1}) = Eπ(s) > 0, and, since X ′ is geometrically ergodic, Theorem 2.5

of Nummelin and Tuominen (1982) then implies that there exists a β > 1 such that

Eπβ
τ1 <∞.

Corollary 2. Assume the conditions in Lemma 7. For any a > 0

∞∑
i=0

[Prπ(τ1 ≥ i+ 1)]a ≤ (Eπβ
τ1)a

∞∑
i=0

β−a(i+1) <∞ .

Proof of Lemma 5

By Lemma 6, it is enough to verify that Eπτ
p
1 <∞ and EπS

p
1 <∞. Lemma 7 shows

that Eπτ
p
1 <∞ for any p > 0.
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To show that EπS
p
1 <∞, we will first note that

C :=
((
Eπ|g(Xi)|p+δ

) p
p+δ

)1/p

<∞ . (3.21)

For p ≥ 1 we use the triangle inequality in Lp, Hölder’s inequality, the inequality

in (3.21) and finally Corollary 2.

(EπS
p
1)

1/p ≤

[
Eπ

(
τ1−1∑
i=0

|g(Xi)|

)p]1/p

=

[
Eπ

(
∞∑
i=0

I(i ≤ τ1 − 1)|g(Xi)|

)p]1/p

≤
∞∑
i=0

[EπI(i ≤ τ1 − 1)|g(Xi)|p]1/p

≤
∞∑
i=0

[
(EπI(i ≤ τ1 − 1))

δ
p+δ
(
Eπ|g(Xi)|p+δ

) p
p+δ

]1/p

= C

∞∑
i=0

(Pπ(τ1 ≥ i+ 1))
δ

p(p+δ) <∞ .

For 0 < p < 1 we can use the fact xp is concave and then proceed similarly as above

to obtain

EπS
p
1 ≤ Eπ

(
∞∑
i=0

I(i ≤ τ1 − 1)|g(Xi)|

)p

≤
∞∑
i=0

EπI(i ≤ τ1 − 1)|g(Xi)|p

= Cp

∞∑
i=0

(Pπ(τ1 ≥ i+ 1))
δ

p+δ <∞ .
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3.4.2 Results for Proof of Theorem 5

Recall that X = {X1, X2, . . . } is a Harris ergodic Markov chain. Define the process

Y = {Yi = g(Xi) − Eπg } for i = 1, 2, 3, . . . with Ȳj(k) := k−1
∑k

i=1 Yj+i for j =

0, . . . , n− bn and k = 1, . . . , bn and Ȳn := Y1(n) = n−1
∑n

i=1 Yi.

Proposition 3. (Damerdji, 1991, Theorem 3.1) Under Assumption 1, there exist

sequences αn(k) and dn such that σ̂2(n) = 2πfn(0)− dn where

αn(k) = k2∆2wn(k) and

dn = n−1

([
bn∑
l=1

∆1wn(l)

(
l−1∑
i=1

Z2
i +

n∑
i=n−bn+l+1

Z2
i

)]

+ 2
bn−1∑
s=1

[
bn−s∑
l=1

∆1wn(s+ l)

(
l−1∑
i=1

ZiZs+i +
n−s∑

i=n−bn+l+1

ZiZs+i

)])

where Zi = Yi − Ȳn for all i = 1, 2, . . . , n and any empty sums are defined to be zero.

Proof. Damerdji (1991) contains a general proof for Proposition 3 that generalizes

this result to all frequencies. This proof contains the specific proof for φ = 0 with

some added details for clarification.

For clarity, we will define wn(k) := wk, ∆1wn(k) := ∆1wk, and ∆2wn(k) := ∆2wk.

Then we can notice that

∆1wl =
bn∑
k=l

∆2wk , (3.22)

bn∑
l=s+1

∆1wl = ws , and (3.23)

bn∑
l=1

∆1wl = 1 . (3.24)
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Recall that Zi = Yi − Ȳn; therefore

(Ȳj(k)− Ȳn)2 = k−2
(
(Yj+1 + · · ·+Xj+k)− kȲn

)2
= k−2

(
k∑

l=1

Zj+l

)2

= k−2

(
k∑

l=1

Z2
j+l + 2

k−1∑
s=1

k−s∑
l=1

Zj+lZj+l+s

)

and from (3.10) with αn(k) = k2∆2wn(k),

σ̂2(n) = n−1

n−bn∑
j=0

bn∑
k=1

k2∆2wk(Ȳj(k)− Ȳn)2

= n−1

n−bn∑
j=0

bn∑
k=1

∆2wk

[
k∑

l=1

Z2
j+l

]
+

[
2n−1

n−bn∑
j=0

bn∑
k=1

∆2wk

k−1∑
s=1

k−s∑
l=1

Zj+lZj+l+s

]
.

(3.25)

By permuting sums in (3.25), we will arrive at the characterization. Denote the first

term in (3.25) as A and the second as B. Then we have that

A = n−1

n−bn∑
j=0

bn∑
k=1

k∑
l=1

∆2wkZ
2
j+l

= n−1

n−bn∑
j=0

bn∑
l=1

bn∑
k=l

∆2wkZ
2
j+l

= n−1

n−bn∑
j=0

bn∑
l=1

Z2
j+l

bn∑
k=l

∆2wk .
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Then at lag s = 0 from (3.8) and (3.22),

A = n−1

n−bn∑
j=0

bn∑
l=1

∆1wlZ
2
j+l =

bn∑
l=1

∆1wln
−1

n−bn∑
j=0

Z2
j+l

=
bn∑
l=1

∆1wl

(
γn(0)− n−1

(
Z2

1 + . . . Z2
l−1 + Z2

n−bn+1+l + · · ·+ Z2
n

))
.

For s ≥ 0, let

an(s) = n−1

bn−s∑
l=1

∆1ws+l

(
l−1∑
i=1

ZiZs+i +
n−s∑

i=n−bn+l+1

ZiZs+i

)
.

Then from (3.24),

A = γn(0)− an(0) .

Now we can turn our attention to B,

B = 2n−1

n−bn∑
j=0

bn∑
k=1

k−1∑
s=1

k−s∑
l=1

∆2wkZj+lZj+l+s .
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Again, we will begin by permuting the order of the summations

B = 2n−1

n−bn∑
j=0

bn∑
k=1

k−1∑
s=1

k−s∑
l=1

∆2wkZj+lZj+l+s

= 2n−1

n−bn∑
j=0

bn−1∑
s=1

bn∑
k=s

k−s∑
l=1

∆2wkZj+lZj+l+s

= 2n−1

bn−1∑
s=1

n−bn∑
j=0

bn∑
k=s

k−s∑
l=1

∆2wkZj+lZj+l+s

= 2n−1

bn−1∑
s=1

n−bn∑
j=0

bn−s∑
l=1

Zj+lZj+l+s

bn∑
k=l+s

∆2wk

= 2n−1

bn−1∑
s=1

n−bn∑
j=0

bn−s∑
l=1

Zj+lZj+l+s∆1ws+l

= 2n−1

bn−1∑
s=1

bn−s∑
l=1

n−bn∑
j=0

Zj+lZj+l+s∆1ws+l

= 2
bn−1∑
s=1

bn−s∑
l=1

∆1ws+l

[
γn(s)− n−1 (ZlZs+l + · · ·+ Zl−1Zs+l−1 + · · ·+ Zn−sZn)

]
.

Therefore,

B = 2
bn−1∑
s=1

(
bn−s∑
l=1

∆1ws+l

)
γn(s)− 2

bn−1∑
s=1

an(s) .

Then by (3.23) we have

B = 2
bn−1∑
s=1

γn(s)wn(s)− 2
bn−1∑
s=1

an(s) .

Let

dn = an(0) + 2
bn−1∑
s=1

an(s) .
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Then we have

σ̂2(n) = γn(0) + 2
bn−1∑
s=1

γn(s)wn(s)− dn ,

and since the lag window is assumed to be even, we can write

σ̂2(n) = γn(0) +
bn−1∑

s=−(bn−1)

γn(s)wn(s)− dn ,

and using our previous notation, σ̂2(n) = 2πfn(0)− dn.

Lemma 8. Suppose (3.6) holds with ψ(n) = nα log n where α = 1/(2 + δ) and

Assumptions 1 and 2 hold. If

1. a sampling plan bn and a lag window wn(·) exist such that

bnn
2α(log n)3

(
bn∑

k=1

|∆2wn(k)|

)2

→ 0 as n→∞ and (3.26)

n2α(log n)2

bn∑
k=1

|∆2wn(k)| → 0 as n→∞ . (3.27)

Then as n→∞, σ̂2(n)− σ2
g σ̃

2
∗ → 0 w.p.1.

Proof. Notice

σ̂2(n)− σ2
g σ̃

2
∗ = n−1

n−bn∑
j=0

bn∑
k=1

k2∆2wn(k)
([
Ȳj(k)− Ȳn

]2 − σ2
g

[
B̄j(k)− B̄n

]2)

where B̄j(k) = k−1(B(j + k)−B(j)) and B̄n = n−1B(n) are defined as before. If we
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let

A = k
[
Ȳj(k)− σgB̄j(k)

]
=

[(
j+k∑
i=1

Yi − σgB(j + k)

)
−

(
j∑

i=1

Yi − σgB(j)

)]
,

D = B(j + k)−B(j) ,

E = kB̄n and

F = k
[
Ȳn − σgB̄n

]
,

then

k(Ȳj(k)− Ȳn) = k
[
Ȳj(k)− Ȳn ± σgB̄j(k)± σgB̄n

]
= k

[
Ȳj(k)− σgB̄j(k)

]
+ σg [B(j + k)−B(j)]

− σgkB̄n − k
[
Ȳn − σgB̄n

]
= A+ σg(D − E)− F .

We can then rewrite

∣∣σ̂2(n)− σ2
g σ̃

2
∗
∣∣ ≤ n−1

n−bn∑
j=0

bn∑
k=1

∣∣∆2wn(k)
[
(A+ σg(D − E)− F )2 − σ2

g(D − E)2
]∣∣

≤ n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)|
[
A2 + F 2 + 2σg|AD|+ 2σg|AE|

+2σg|AF |+ 2σg|DF |+ 2σg|EF |] . (3.28)

It suffices to show the 7 terms in (3.28) tend to 0 as n→∞. To this end, we will use

the LIL type results on the increments of Brownian motion from Appendix A.1. Our

assumptions say there exists a strong invariance principle, or there exists a constant
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C such that for all large n∣∣∣∣∣
n∑

i=1

g(Xi)− nEπg − σgB(n)

∣∣∣∣∣ ≤ Cnα log n (3.29)

where α = 1/(2 + δ).

1. From (3.29), we can see that

|A| ≤ C(j + k)α log(j + k) + C(j)α log(j) ≤ 2Cnα log n (3.30)

resulting in

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)|A2 ≤ 4C2n2α(log n)2

bn∑
k=1

|∆2wn(k)| → 0

as n→∞ by (3.27).

2. From (3.29) and the fact that k ≤ bn ≤ n

|F | ≤ Cknα−1 log n , (3.31)

resulting in

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)|F 2 ≤ C2n2α−2(log n)2

bn∑
k=1

k2 |∆2wn(k)|

≤ C2b2nn
2α−2(log n)2

bn∑
k=1

|∆2wn(k)| → 0

as n→∞ by (3.27).
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3. From Lemma 16

|D| = |B(j + k)−B(j)|

≤ sup
0≤t≤n−bn

sup
0≤s≤bn

|B(t+ s)−B(t)|

≤ (1 + ε)

(
2bn

(
log

n

bn
+ log log n

))1/2

≤ 2(1 + ε)b1/2
n (log n)1/2 . (3.32)

Combining this with (3.30), we can see

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)| 2σg |AD|

≤ 8Cσg(1 + ε)b1/2
n nα (log n)3/2

bn∑
k=1

|∆2wn(k)| → 0

as n→∞ by (3.26).

4. From Lemma 15

|E| ≤
√

2(1 + ε)kn−1/2(log log n)1/2 . (3.33)

Combining this with (3.30), we can see

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)| 2σg |AE|

≤ 25/2Cσg(1 + ε)nα−1/2 log n(log log n)1/2

bn∑
k=1

k |∆2wn(k)| → 0

as n→∞ by (3.26).
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5. From (3.30) and (3.31) we can write

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)| 2 |AF |

≤ 4C2n2α−1(log n)2

bn∑
k=1

k |∆2wn(k)| → 0

as n→∞ by (3.27).

6. From (3.32) and (3.31) we can write

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)| 2σg |DF |

≤ 4σg(1 + ε)b1/2
n nα−1 (log n)3/2

bn∑
k=1

k |∆2wn(k)| → 0

as n→∞ by (3.26).

7. From (3.33) and (3.31) we can write

n−1

n−bn∑
j=0

bn∑
k=1

|∆2wn(k)| 2σg |EF |

≤ 23/2Cσg(1 + ε)nα−3/2 log n(log log n)1/2

bn∑
k=1

k2 |∆2wn(k)| → 0

as n→∞ by (3.26).

Hence, all the terms in (3.28) tend to 0 as n→∞ and the lemma is proved.

Lemma 9. Let X be a geometrically ergodic Markov chain with invariant distribution

π and g : X → R be a Borel function with Eπ|g|2+δ+ε <∞ for some δ ≥ 2 and some

ε > 0. If Assumption 2 holds, b−1
n log n stays bounded as n→∞, and b−1

n n2α log n→ 0
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as n→∞ where α = 1/(2+δ), then b−1
n

∑bn

i=1 Y
2
i and b−1

n

∑n
i=n−bn+1 Y

2
i stay bounded

as n→∞ w.p.1.

Proof. First note that if Eπ|g|2 < ∞, then b−1
n

∑bn

i=1 Y
2
i stays bounded as n → ∞

w.p.1 from the Ergodic Theorem.

Consider the sequence {Y 2
i : i ≥ 1}. The stated assumptions imply a Markov chain

CLT holds where σ′g < ∞ is defined as the resulting asymptotic standard deviation.

Lemma 4 implies that∣∣∣∣∣
n∑

i=1

Y 2
i − nEπY

2
1 − σ′gB(n)

∣∣∣∣∣ < C ′(ω)n2α log n

for all n > n0.

Then

b−1
n

∣∣∣∣∣
n∑

i=n−bn+1

Y 2
i

∣∣∣∣∣ = b−1
n

∣∣∣∣∣
n∑

i=1

Y 2
i −

n−bn∑
i=1

Y 2
i

∣∣∣∣∣
= b−1

n

∣∣∣∣∣
(

n∑
i=1

Y 2
i − nEπY

2
1 − σ′gB(n)

)

−

(
n−bn∑
i=1

Y 2
i − (n− bn)EπY

2
1 − σ′gB(n− bn)

)

+ σ′g (B(n)−B(n− bn)) + bnEπY
2
1

∣∣∣∣∣
≤ b−1

n

(
2C ′(ω)nα′ log n+ (1 + ε)

(
2bn

(
log

n

bn
+ log log n

))1/2

+ bnEπY
2
1

)
= EπY

2
1 + 2C ′(ω)b−1

n nα′ log n+O
(
(b−1

n log n)1/2
)

w.p.1.

Hence, b−1
n

∣∣∑n
i=n−bn+1 Y

2
i

∣∣ stays bounded w.p.1 since b−1
n nα′ log n→ 0 as n→∞.

Lemma 10. (Damerdji, 1991, Proposition 4.3) Suppose Assumptions 1 and 2 hold.
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1.

bnn
−1

bn∑
k=1

k |∆1wn(k)| → 0 as n→∞ ;

2. and b−1
n

∑bn

i=1 Y
2
i and b−1

n

∑n
i=n−bn+1 Y

2
i stay bounded as n→∞ w.p.1.

Then dn → 0 as n→∞ w.p.1.

Proof. Damerdji (1991) shows a proof for general processes which is expanded here

for clarity. We will show dn → 0 as n→∞ w.p.1 in three steps. Recall

dn = n−1

([
bn∑
l=1

∆wn(l)

(
l−1∑
i=1

Z2
i +

n∑
i=n−bn+l+1

Z2
i

)]

+ 2
bn−1∑
s=1

[
bn−s∑
l=1

∆wn(s+ l)

(
l−1∑
i=1

ZiZs+i +
n−s∑

i=n−bn+l+1

ZiZs+i

)])
, (3.34)

where any empty sums are defined to be zero and Zi = Yi − Ȳn for all i = 1, 2, . . . , n.

1. Let us put bounds on |dn| such that for l = 1, . . . , bn

l−1∑
i=1

Z2
i ≤

bn∑
i=1

Z2
i and

n∑
i=n−bn+l+1

Z2
i ≤

n∑
i=n−bn+1

Z2
i .

Then bound the sums in the cross terms using the inequality |ab| ≤ (a2 + b2)/2.

So, for s = 1, . . . , bn and l = 1, . . . , bn − s we have

l−1∑
i=1

|ZiZs+i| ≤
1

2

l−1∑
i=1

(
Z2

i + Z2
s+i

)
≤

bn∑
i=1

Z2
i

and
n−s∑

i=n−bn+l+1

|ZiZs+i| ≤
n∑

i=n−bn+1

Z2
i .
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Then |dn| can be bounded by

|dn| ≤

(
bn∑
i=1

Z2
i +

n∑
i=n−bn+1

Z2
i

)
n−1

(
bn∑
l=1

|∆wn(l)|+ 2
bn−1∑
s=1

bn−s∑
l=1

|∆wn(s+ l)|

)

= b−1
n

(
bn∑
i=1

Z2
i +

n∑
i=n−bn+1

Z2
i

)

× n−1bn

(
bn∑
l=1

|∆wn(l)|+ 2
bn−1∑
s=1

bn−s∑
l=1

|∆wn(s+ l)|

)

= b−1
n

(
bn∑
i=1

Z2
i +

n∑
i=n−bn+1

Z2
i

)
(3.35)

× n−1bn

(
bn∑
l=1

|∆wn(l)|+ 2
bn∑

k=1

k |∆wn(k)|

)
. (3.36)

Then we can see that (3.36) tends to 0 as n→∞ by condition 1. We will show

in the next two steps that (3.35) is bounded implying dn → 0 as n→∞ w.p.1.

2. Here, we will use the fact that b−1
n

∑bn

i=1 Y
2
i and b−1

n

∑n
i=n−bn+1 Y

2
i stay bounded

as n→∞ w.p.1.

b−1
n

bn∑
i=1

Z2
i = b−1

n

bn∑
i=1

Y 2
i − 2Ȳnb

−1
n

bn∑
i=1

Yi +
(
Ȳn

)2
.

Then the first term is bounded and by the Cauchy-Schwartz inequality we have

(
bn∑
i=1

Yi

)2

≤
bn∑
i=1

Y 2
i

which implies
∑bn

i=1 Yi is bounded resulting in a bound for the second term.

Finally, the third term is bounded by the assumption of a finite mean through-

out. Therefore, b−1
n

∑bn

i=1 Z
2
i stays bounded for large n w.p.1 and hence the

expression in dn coming from the starting observations goes to 0.



3.4. Proofs and Calculations 105

3. Similarly, we can show b−1
n

∑n
i=n−bn+1 Z

2
i stays bounded for large n w.p.1.

Thus, dn → 0 as n→∞ w.p.1.

3.4.3 Results for Proof of Proposition 2

Lemma 11. (Jones et al., 2006, Lemma 8) Suppose (3.6) holds with ψ(n) = nα log n

where α = 1/(2 + δ) and Assumption 2 holds. If (i) b−1
n n2α[log n]3 → 0 as n → ∞

then σ̂2
BM − σ2

g σ̃
2
BM → 0 as n→∞ w.p.1.

Proof. Recall that X = {X1, X2, . . . } is a Harris ergodic Markov chain. Define the

process Y by Yi = g(Xi)− Eπg for i = 1, 2, 3, . . . . Then

σ̂2
BM =

bn
an − 1

a−1∑
k=0

(Ȳk − Ȳn)2

where Ȳk := 1
bn

∑bn

i=1 g(Xkbn+i) for k = 0, . . . , a− 1 and Ȳn = n−1
∑n

i=1 Yi. Since

Ȳk − Ȳn = Ȳk − Ȳn ± σgB̄k ± σgB̄n

we have

∣∣σ̂2
BM− σ2

g σ̃
2
BM

∣∣ ≤ bn
an − 1

a−1∑
k=0

[(
Ȳk − σgB̄k

)2
+
(
Ȳn − σgB̄n

)2
+
∣∣2 (Ȳk − σgB̄k

) (
Ȳn − σgB̄n

)∣∣+ ∣∣2σg

(
Ȳk − σgB̄k

)
B̄k

∣∣
+
∣∣2σg

(
Ȳk − σgB̄k

)
B̄n

∣∣+ ∣∣2σg

(
Ȳn − σgB̄n

)
B̄k

∣∣
+
∣∣2σg

(
Ȳn − σgB̄n

)
B̄n

∣∣] .
Now we will consider each term in the sum and show that it tends to 0.
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1. Our assumptions say that there exists a constant C such that for all large n∣∣∣∣∣
n∑

i=1

g(Xi)− nEπg − σgB(n)

∣∣∣∣∣ < Cnα log n w.p.1. (3.37)

Note that

Ȳk − σgB̄k =
1

bn

(k+1)bn∑
i=1

Yi − σgB((k + 1)bn)

− 1

bn

[
kbn∑
i=1

Yi − σgB(kbn)

]

and hence by (3.37)

∣∣Ȳk − σgB̄k

∣∣ ≤ 1

bn

∣∣∣∣∣∣
(k+1)bn∑

i=1

Yi − σgB((k + 1)bn)

∣∣∣∣∣∣+
∣∣∣∣∣

kbn∑
i=1

Yi − σgB(kbn)

∣∣∣∣∣


<
2

bn
Cnα log n (3.38)

Then
bn

an − 1

a−1∑
k=0

(
Ȳk − σgB̄k

)2
< 4C2 an

an − 1
b−1
n n2α(log n)2 → 0

as n→∞ since Assumption 2 implies an →∞ as n→∞ and (i).

2. Apply (3.37) to obtain

∣∣Ȳn − σgB̄n

∣∣ = n−1

∣∣∣∣∣
n∑

i=1

Yi − σgB(n)

∣∣∣∣∣ < Cnα−1 log n . (3.39)

Then
bn

an − 1

a−1∑
k=0

(
Ȳn − σgB̄n

)2
< C2 an

an − 1

bn
n

(log n)2

n1−2α
→ 0

as n→∞ by Assumption 2 and since 1− 2α > 0.
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3. By (3.38) and (3.39)

∣∣2 (Ȳk − σgB̄k

) (
Ȳn − σgB̄n

)∣∣ < 4C2b−1
n n2α−1(log n)2 .

Thus

bn
an − 1

a−1∑
k=0

∣∣2 (Ȳk − σgB̄k

) (
Ȳn − σgB̄n

)∣∣ < 4C2 an

an − 1

(log n)2

n1−2α
→ 0

as n→∞ by Assumption 2 and since 1− 2α > 0.

4. Since bn ≥ 2, (A.2) and (3.38) together imply

∣∣(Ȳk − σgB̄k

)
B̄k

∣∣ < 23/2C(1 + ε)b−1
n

[
b−1
n n2α(log n)2 log(n/bn)

+b−1
n n2α(log n)2 log log n

]1/2
.

Hence

bn
an − 1

a−1∑
k=0

∣∣2σg

(
Ȳk − σgB̄k

)
B̄k

∣∣ ≤
8σgC(1 + ε)

an

an − 1

[
b−1
n n2α(log n)2 log(n/bn) + b−1

n n2α(log n)2 log log n
]1/2

which tends to 0 as n→∞ by Assumption 2 and (i).

5. By (3.38) and (A.1)

∣∣(Ȳk − σgB̄k

)
B̄n

∣∣ < 4C(1 + ε)b−1
n n−1/2+α(log n)(log log n)1/2
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so that

bn
an − 1

a−1∑
k=0

∣∣2σg

(
Ȳk − σgB̄k

)
B̄n

∣∣ <
8σgC(1 + ε)

an

an − 1

(log n)(log log n)1/2

n1/2−α
→ 0

as n→∞ by Assumption 2 and since 1/2− α > 0.

6. Use (A.2) and (3.39) to get

∣∣(Ȳn − σgB̄n

)
B̄k

∣∣ < √
2C(1 + ε)

nα−1 log n

b
1/2
n

[log(n/bn) + log log n]1/2

and hence using Assumption 2 and (i) shows that as n→∞

bn
an − 1

a−1∑
k=0

∣∣2σg

(
Ȳn − σgB̄n

)
B̄k

∣∣ <
4σgC(1 + ε)

an

an − 1

bn
n

[
b−1
n n2α((log n)2 log(n/bn) + (log n)2 log log n)

]1/2 → 0 .

7. Now (A.1) and (3.39) imply

∣∣(Ȳn − σgB̄n

)
B̄n

∣∣ < 2C(1 + ε)n−3/2+α(log n)3/2 .

Hence

bn
an − 1

a−1∑
k=0

∣∣2σg

(
Ȳn − σgB̄n

)
B̄n

∣∣ < 4σgC(1 + ε)
an

an − 1

bn
n

(log n)3/2

n1/2−α
→ 0

as n→∞ by Assumption 2 and since 1/2− α > 0.
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3.4.4 Results for Mean-Square Consistency

Preliminary Results

We require the Generalized Dominated Convergence Theorem.

Lemma 12. (Zeidler, 1990, p. 1015) Suppose

1. ||fn(x)| | ≤ gn(x) for almost all x ∈ M and all n ∈ N where all the functions

gn, g : M → R are integrable and we have the convergence gn → g almost

everywhere on M as n→∞ along with

∫
M

gndx→
∫

M

gdx as n→∞ ,

2. limn→∞ fn(x) exists for almost all x ∈ M , where fn : M ⊆ RN → Y is mea-

sureable for all n.

Then we have

lim
n→∞

∫
M

fndx =

∫
M

lim
n→∞

fn(x)dx .
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Lemma 13. (Jones et al., 2006, p. 1545-1546) Suppose (3.6) holds with ψ(n) =

nα log n where α = 1/(2 + δ) and Assumption 2 holds. Then as n→∞

∣∣σ̂2
BM − σ2

g σ̃
2
BM

∣∣ ≤ 4C2 an

an − 1
b−1
n n2α(log n)2 + C2 an

an − 1

bn
n

(log n)2

n1−2α

+ 4C2 an

an − 1

(log n)2

n1−2α
+ 8σgC(1 + ε)

an

an − 1

×
[
b−1
n n2α(log n)2 log(n/bn) + b−1

n n2α(log n)2 log log n
]1/2

+ 8σgC(1 + ε)
an

an − 1

(log n)(log log n)1/2

n1/2−α

+ 4σgC(1 + ε)
an

an − 1

bn
n

×
[
b−1
n n2α((log n)2 log(n/bn) + (log n)2 log log n)

]1/2

+ 4σgC(1 + ε)
an

an − 1

bn
n

(log n)3/2

n1/2−α
(3.40)

w.p.1.

Remark 12. Notice that if b−1
n n2α[log n]3 → 0 as n → ∞,

∣∣σ̂2
BM − σ2

g σ̃
2
BM

∣∣ → 0 as

n→∞.

Lemma 14. Suppose (3.6) holds with ψ(n) = nα log n where α = 1/(2+ δ), Assump-

tion 2 holds, and let g : X → R be a Borel function with Eπg
4 < ∞. Suppose σ̂2 is

σ̂2
BM or σ̂2

OBM .

1. If b−1
n n2α[log n]3 → 0 as n→∞, then

lim
n→∞

E
[∣∣σ̂2 − σ2

g σ̃
2
∣∣] = 0 if EπC

2 <∞ and

lim
n→∞

E
[(
σ̂2 − σ2

g σ̃
2
)2]

= 0 if EπC
4 <∞ .
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2. If b−1
n n1/2+α[log n]3/2 → 0 as n→∞, then

lim
n→∞

E

[
n

bn

(
σ̂2 − σ2

g σ̃
2
)2]

= 0 if EπC
4 <∞ .

Proof. We will only prove the first claim for BM as the proof of the others are similar.

From Lemma 13 there exists an integer N0 and functions g1 and g2 such that

|σ̂2
BM − σ2

g σ̃
2
BM | = |σ̂2

BM − σ2
g σ̃

2
BM |I(0 ≤ n ≤ N0) + |σ̂2

BM − σ2
g σ̃

2
BM |I(N0 < n)

≤ |σ̂2
BM − σ2

g σ̃
2
BM |I(0 ≤ n ≤ N0) + [C2g1(n) + Cg2(n)]I(N0 < n)

:= gn(X1, . . . Xn, B(0), . . . , B(n)) .

Now

Egn(X1, . . . Xn, B(0), . . . , B(n)) = I(0 ≤ n ≤ N0)E|σ̂2
BM − σ2

g σ̃
2
BM |

+ [g1(n)E(C2) + g2(n)E(C)]I(N0 < n)

and since Lemma 23 and our assumptions on the moments of g imply

E|σ̂2
BM − σ2

g σ̃
2
BM | ≤ Eσ̂2

BM + σ2
gEσ̃

2
BM = Eσ̂2

BM + σ2
g <∞

it follows from our assumptions on the moments of C that E|gn| <∞. Next observe

that as n→∞, we have gn → 0 w.p.1 and Egn → 0 by Lemma 13. From Lemma 11

we have that |σ̂2
BM−σ2

g σ̃
2
BM | → 0 w.p.1 as n→∞. An application of the Generalized

Dominated Convergence Theorem implies, as n→∞,

E
[∣∣σ̂2

BM − σ2
g σ̃

2
BM

∣∣]→ 0 .

The second result for BM is similar if (3.40) is multiplied through by (n/bn)1/2.
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Then note that b−1
n n1/2+α(log n)3/2 → 0 as n → ∞ implies b

−3/2
n n1/2+2α(log n)3 → 0

as n→∞.

For OBM, the results follow from Lemma 8 with the modified Bartlett lag window

and the Generalized Dominated Convergence Theorem.

Proof of Theorem 7

Damerdji (1995) shows a proof for mean-square consistency assuming (3.6) holds with

γ(n) = n1/2−α′ where α′ ≤ δ′/(24 + 12δ′). However, this result incorrectly simplifies

results similar to Lemma 8 and Lemma 13 by only addressing the slowest converging

term. This leads to a necessary condition of EπC
2 < ∞ rather than EπC

4 < ∞. In

addition, the result incorrectly proves the result in Appendix A of Damerdji (1995)

which we replace with the Generalized Dominated Convergence Theorem. Both of

these issues are corrected in the statement in the proof.

Here we show the proof for geometrically ergodic chains. For ease of exposition,

suppose σ̃2 is the appropriate Brownian motion variance estimate defined in Ap-

pendix A.1.4. Both σ̂2 and σ̃2 are still dependent on n, but we have suppressed this

dependence.

Recall, the MSE of the estimator σ̂2 of σ2
g is given by MSE(σ̂2) := Eσ2

g
[(σ̂2−σ2

g)
2].

In this case, σ2
g is a parameter of π, so we could think of this expectation as MSE(σ̂2) =

Eπ[(σ̂2 − σ2
g)

2]. Throughout this proof, we will suppress this dependency, but the

results will only apply to stationary processes because of this dependency on π.
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1. First, we will show limn→∞
n
bn

Var(σ̂2) = 4
3
σ4

g as n→∞. First, one can write

Var(σ̂2) = E
[(

(σ̂2 − σ2
g σ̃

2) + σ2
g(σ̃

2 − Eσ̃2)− (Eσ̂2 − σ2
gEσ̃

2)
)2]

= σ4
gE
[
(σ̃2 − Eσ̃2)2

]
+ E

[(
(σ̂2 − σ2

g σ̃
2)− E(σ̂2 − σ2

g σ̃
2)
)2]

+ 2σ2
gE
[
(σ̃2 − Eσ̃2)

(
(σ̂2 − σ2

g σ̃
2)− E(σ̂2 − σ2

g σ̃
2
)]

= σ4
gVar(σ̃2) + η , (3.41)

where

η = Var
(
σ̂2 − σ2

g σ̃
2
)

+ 2σ2
gE
[
(σ̃2 − Eσ̃2)(σ̂2 − σ2

g σ̃
2)
]
.

Using Lemma 23, (3.41) reduces to

Var(σ̂2) = cσ4
g

bn
n

+ o

(
bn
n

)
+ η ,

where c = 2 for BM and c = 4/3 for OBM.

To finish the proof of this part of the theorem, we will show that η → 0 as n→

∞. We can simplify the expression of η using the Cauchy-Schwarz inequality

and the fact that Var(X) ≤ EX2,

|η| =
∣∣Var

(
σ̂2 − σ2

g σ̃
2
)

+ 2σ2
gE
[
(σ̃2 − Eσ̃2)(σ̂2 − σ2

g σ̃
2)
]∣∣

≤ E
[(
σ̂2 − σ2

g σ̃
2
)2]

+ 2σ2
g

(
E
[(
σ̂2 − σ2

g σ̃
2
)2]

Var
(
σ̃2
))1/2

,

which tends to zero as a result of Proposition 14 and (A.12).

2. Next, we will show Bias(σ̂2) → 0 as n→∞.
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Lemma 23 shows that E [σ̃2] = 1. We can use this fact with Lemma 14 to get

Bias(σ̂2) = E(σ̂2)− σ2
g

≤ E
[∣∣σ̂2 − σ2

g σ̃
2
∣∣] ,

which tends to zero as n→∞.

3. Clearly, MSE(σ̂2) → 0 as n→∞ from the first two parts of the theorem.

Proof of Theorem 8

Recall σ̃2 is defined in Appendix A.1.4. Using (A.12) from Lemma 23, (3.41) reduces

to
n

bn
Var(σ̂2) = cσ4

g + o (1) +
n

bn
η ,

where c = 2 for BM and c = 4/3 for OBM.

To finish the proof, we will show that n
bn
η → 0 as n→∞. Again, we can simplify

the expression using the Cauchy-Schwarz inequality and the fact that Var(X) ≤ EX2,

n

bn
|η| = n

bn

∣∣Var
(
σ̂2 − σ2

g σ̃
2
)

+ 2σ2
gE
[
(σ̃2 − Eσ̃2)(σ̂2 − σ2

g σ̃
2)
]∣∣

≤ E

[
n

bn

(
σ̂2 − σ2

g σ̃
2
)2]

+ 2σ2
g

(
E

[
n

bn

(
σ̂2 − σ2

g σ̃
2
)2] n

bn
Var

(
σ̃2
))1/2

,

which tends to zero as a result of Lemma 14 and (A.12).



Chapter 4

Subsampling

We have seen several approaches for dealing with ergodic averages and their corre-

sponding standard errors. Very little formal attention has been given to quantities

that cannot be expressed as an ergodic average. This is somewhat surprising con-

sidering empirical quantiles of the posterior distribution are commonly reported in

MCMC literature. For this reason, we introduce subsampling (Politis et al., 1999) for

time–series data and illustrate its use in two examples.

4.1 Introduction

Suppose we want to find the value of some functional θ := θπ where π is a probability

distribution with support X. Our discussion to this point only applies when θ = Eπg.

How can we extend these ideas to characteristics of the target distribution that cannot

be represented as ergodic averages? For example, θ might be the qth quantile of π.

Usually in the MCMC literature, when θ is a quantile what is nearly always meant

is that it is a quantile of one of the univariate marginal distributions associated with

π. The natural estimate of θ is simply the sample quantile from the observed Markov

chain. For a general quantity, consider

θ̂n = θ̂ (X1, . . . , Xn) (4.1)

115
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as the appropriate estimate of θ. As before, θ̂n is only a point estimate for the quantity

of interest and we would like to assess the MCSE of θ̂n.

First, consider the sampling distribution of θ̂n, Carlstein (1986) provides one set

of conditions for asymptotic normality for a general statistic under non-trivial depen-

dence. Here, we will present one corollary of his results for quantiles in the context

of a stationary Markov chain. The relationship between the required mixing con-

ditions from Carlstein (1986) and those stated here can be found in Section 2.4.2.

Let us define for κ ∈ [1/n, 1] the statistic Zi
b(κ) to be the [κn]th ordered element of

{Xi+1, Xi+2, . . . , Xi+b}. If we consider a subsample from X of length bn = b where we

are suppressing the dependency on n (though this is not necessary in general), then

Proposition 4 gives us joint asymptotic normality between the same quantile from

the sample and the subsample, Z0
n(κ) and Zi

b(κ) respectively.

Proposition 4. (Carlstein, 1986, Corollary 10) Let X1 have an absolutely continuous

strictly increasing cdf F , with derivative f . Let Fi(X1, Xi) be the joint cdf of (X1, Xi).

Define k := F−1(κ). If f(k) > 0 and X is geometrically ergodic, then

ν :=
∞∑

i=−∞

[
Fi(k, k)− κ2

]
<∞ .

If ν > 0 and tib :=
√
b(Zi

b(κ) − k) then for any sequence n satisfying b/n → ρ2 and

n ≥ i+ b ≥ b→∞ t0n

tib

 d→ N

 0

0

 ,

 σ2 ρσ2

ρσ2 σ2

 , for all ρ2 ∈ (0, 1) ,

where σ2 = ν/f 2(k).

Carlstein (1986) gives a more general result that is used by Politis et al. (1999) to

address these questions for a general statistic. Applying this theorem requires further
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work to estimate σ2. To this end, we will focus our attention on the block bootstrap

and subsampling methods.

4.1.1 Non-overlapping Block Bootstrap

While there has been little investigation of the utility of bootstrap methods in the con-

text of MCMC there has been a substantial amount of work on using bootstrap meth-

ods for stationary time–series. Some of this work is appropriate for use in MCMC; see

e.g., Bertail and Clémençon (2006), Bühlmann (2002), Datta and McCormick (1993),

Politis (2003). Efron and Tibshirani (1993) provide a thorough introduction to the

bootstrap.

One of the simplest approaches is to use a non-overlapping block resampling

scheme to estimate the Monte Carlo standard error of θ̂n. Davison and Hinkley

(1997) provide an overview of this technique. The basic idea is to split the Markov

chain, X, into a non-overlapping blocks of length b, where we suppose the algorithm

is run for a total of n = ab iterations where a = an and b = bn are functions of

n. We will then sample the blocks independently with replacement and with equal

probability and put these blocks together (end to end) to form a new series. We will

use this new series to estimate θ yielding a single bootstrap replicate θ̂∗n. Repeating

this procedure p times results in p independent and identically distributed estimates;

or {
θ̂∗n,1, θ̂

∗
n,2, . . . , θ̂

∗
n,p

}
.

Using the p replicates, we can appeal to classical bootstrap results to estimate the

standard error of θ̂n by defining

σ̂2
B =

1

p− 1

p∑
j=1

(θ̂∗n,j − θ̄∗n)2 where θ̄∗n =
1

p

p∑
j=1

θ̂∗n,j .
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AR1
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(a) Original AR(1) Markov chain

Non−overlapping Resample

Index

X
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−
4

−
2

0
2

4

(b) Resampled AR(1) chain

Figure 4.1: Plots illustrating non-overlapping bootstrap resampling for time–series
data using the AR(1) model.

We can also calculate an approximate (1− α)-level confidence interval as

[
θ̂n − tp−1,α/2 ∗ σ̂B , θ̂n + tp−1,α/2 ∗ σ̂B

]
.

While the simplicity of this method is appealing, there are a number of problems.

For illustration purposes, consider the AR(1) model introduced in Chapter 2 with

ρ = .95. Figure 4.1a shows a plot of {X1, X2, . . . , X200} for one realization of this

Markov chain. Using this data, Figure 4.1b shows a single non-overlapping bootstrap

replicate with 10 batches, each of length 20. We can see the method does not retain

the dependence structure of the original Markov chain. Resampling has introduced a

number of very large jumps (where the blocks join) that are not seen in the original

chain.

In general, resampling tends to generate sequences that are less dependent than

the original. As in the AR(1) example, a chain with strong autocorrelation, block

bootstrap resampling can result in unrepresentative samples. There are also exam-



4.1. Introduction 119

ples (in time–series applications) that “can lead to catastrophically bad resampling

approximations” (Davison and Hinkley, 1997, p. 397). Additionally, we found block

resampling to be extremely computationally intensive even in relatively easy MCMC

problems. With these problems in mind, the non-overlapping block bootstrap was

not pursued.

4.1.2 Subsampling

This section will provide a brief overview of subsampling methods for dependent

data taken from Politis et al. (1999). We will use this framework to estimate the

Monte Carlo standard error of θ̂n and calculate an appropriate confidence interval.

The benefit of subsampling (SUB) methods presented by Politis et al. (1999) are

their generality. Here we will focus on SUB for MCMC. Section 2.4.2 outlines the

connections between the mixing conditions as stated by Politis et al. (1999) and the

presentation here in an MCMC context.

Subsampling differs from the traditional bootstrap in that we are taking samples

(or blocks) of size b without replacement from the initial sample of size n. Typically,

b << n, and in the case of time–series data, there are n − b + 1 such subsamples.

Notice, if we assume X1 is a draw from π, then the different blocks are identically

distributed, though they are clearly still dependent. If we are interested in estimating

θ, we can define the estimator based on the subsample {Xi, . . . , Xi+b−1} as

θ∗n,b,i = θ̂(Xi, . . . , Xi+b−1) for i = 1, . . . , n− b+ 1 .

Then define Jb,i to be the sampling distribution of τb(θ
∗
n,b,i− θ) where τb is the appro-

priate normalizing constant (which may be unknown). Simplifying notation slightly,

define θ̂n := θ∗n,n,1, the estimator from the whole sample as in (4.1). Then define

Jn := Jn,1 to be sampling distribution of τn(θ̂n − θ) with τn equal to the appropriate
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normalizing constant. The corresponding cumulative distribution function is

Jb,i(x) = Pr{τb(θ∗n,b,i − θ) ≤ x} .

We will approximate Jn(x) := Jn,1(x) with the empirical distribution, namely

Ln,b(x) =
1

n− b+ 1

n−b+1∑
i=1

I{τb(θ∗n,b,i − θ) ≤ x} ,

where I is the usual indicator function on Z+. Then, the main assumption needed to

consistently estimate Jn is as follows.

Assumption 3. (Politis et al., 1999, Assumption 4.2.1) There exists a limiting law J

such that

1. Jn converges weakly to J as n→∞, and

2. for every continuity point x of J and for any sequences n, b with n, b→∞ and

b/n→ 0, we have 1
n−b+1

∑n−b+1
i=1 Jb,i(x) → J(x).

The first condition states that our estimator, properly normalized, has a limiting

distribution. Politis et al. (1999) state “it is hard to conceive of any asymptotic

theory free of such a requirement.” While this may be the case, this is not always a

trivial assumption to verify. If θ = Eπg, then we can appeal to a CLT, but if we are

interested in the case where θ is a quantile (or some other function), it is not entirely

clear how to verify this. Currently, this is an open question, though Proposition 4

from Carlstein (1986) may provide an initial direction.

The second condition states that, for large n, the distribution functions for the

subsamples will on average be close to the distribution function for the entire sam-

ple. Notice that if we assume stationarity, the second part of the assumption is not

necessary.



4.1. Introduction 121

Proposition 5 is stated without proof and follows directly from Theorem 4.2.1 of

Politis et al. (1999). This result allows us to construct a theoretically valid general

confidence interval.

Proposition 5. Suppose Assumption 3 holds and that τb/τn → 0, b/n → 0, and

b→∞ as n→∞. Also assume that X is geometrically ergodic.

1. If x is a continuity point of J(·), then Ln,b(x) → J(x) in probability.

2. If J(·) is continuous, then supx |Ln,b(x)− J(x)| → 0 in probability.

3. For α ∈ (0, 1), let

cn,b(1− α) = inf{x : Ln,b(x) ≥ 1− α} .

Correspondingly, define

cπ(1− α) = inf{x : J(x) ≥ 1− α} .

If J(·) is continuous at cπ(1− α), then

Pr{τn(θ̂n − θ) ≤ cn,b(1− α)} → 1− α as n→∞ .

Thus, the asymptotic coverage probability of the interval [θ̂n− τ−1
n cn,b(1−α),∞)

is the nominal level 1−α. Politis et al. (1999) further extend this result for two-sided

symmetric and equal-tailed intervals, where

[θ̂n − τ−1
n cn,b(1− α/2) , θ̂n + τ−1

n cn,b(α/2)] , (4.2)

is a level 1− α two-sided equal-tailed interval.
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Next, we will consider estimating the variance of θ̂n. First, we will define the

estimator

σ̂2
SUB =

τ 2
b

τ 2
n

n

n− b+ 1

n−b+1∑
i=1

(θ∗n,b,i − θ̄∗n,b,·)
2 , (4.3)

where

θ̄∗n,b,· =
1

n− b+ 1

n−b+1∑
i=1

θ∗n,b,i .

Remark 13. If θ = Eπg, then the estimator from SUB in (4.3) is asymptotically

equivalent to the estimator from OBM in (3.12).

Remark 14. Estimating τn when the limiting distribution converges slower than a
√
n-rate is an open question. Politis et al. (1999) give a method to estimate τn but

there has been no investigation of this in the context of MCMC.

The following theorem gives conditions for the consistency of σ̂2
SUB. Define the

normalized estimator as Tn := τn(θ̂n − E(θ̂n)).

Proposition 6. Let X be a Harris ergodic Markov chain with invariant distribution

π. Further suppose X is geometrically ergodic. Assume that τb/τn → 0, b/n → 0,

and b→∞ as n→∞. Also assume that

1. {(Tn)4} are uniformly integrable,

2. n
n−b+1

∑n−b+1
i=1 Var(τbθ

∗
n,b,i) → σ2,

Then σ̂2
SUB is a consistent estimator of σ2.

The proof follows directly from Lemma 4.6.1 of Politis et al. (1999). Again, the

obvious question is how to verify the necessary assumptions? This again is an open

research question, and a clear direction for future work.

In our examples we take bn = bn1/2c as in our analysis using BM. We note that

in our experience subsampling requires approximately the same computational effort
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as BM (when programmed efficiently). Both of these methods are much less compu-

tationally intensive than the traditional bootstrap. For now, we will restrict our use

of subsampling to when θ is a quantile.

4.2 Stopping the Simulation

In this section we consider two formal approaches to terminating the simulation when

estimating general quantities. The first is based on calculating MCSEs and is a

generalization of the approach used previously. The second is based on the Gelman-

Rubin diagnostic (GRD) introduced in Chapter 1. As we have previously seen, GRD

and MCSEs are used to stop the simulation in a similar manner. After n iterations

either the value of the GRD or MCSE is calculated and if it isn’t sufficiently small

then we continue to run the chain until either value has met a user-specified criterion.

4.2.1 Fixed-Width Methods

In the previous chapters we suggested stopping the simulation when the MCSE of

ḡn is sufficiently small. In this section, we simply generalize this approach to θ̂n. Of

course, we may have to check whether this criterion is met many times, hence the

procedure remains sequential.

Given an estimate of the Monte Carlo standard error of θ̂n, say σ̂2/
√
n, we can

form a confidence interval for θ. If this interval is too large then the value of n

is increased and simulation continues until the interval is sufficiently small. The

procedure is terminated when

t∗
σ̂2

SUB√
n

+ p(n) ≤ ε (4.4)

where t∗ is an appropriate quantile, p(n) = εI(n ≤ n∗) where, n∗ > 0 is fixed, I is
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the usual indicator function on Z+ and ε > 0 is the user-specified half-width. The

role of p is to ensure that the simulation is not terminated prematurely due to a poor

estimate of σ2
g . If θ = Eπg, there exist conditions such that this procedure will result

in asymptotically valid confidence intervals. The immediate question here is whether

these results can be extended to the general case.

Non-parametric Approach

Previously, we proposed stopping the simulation when the half-width in (4.4) is below

a pre-specified value. Alternatively, we could consider a non-parametric approach

when using SUB methods. Using subsampling, we can calculate a non-parametric

1−α confidence interval as in (4.2). Using these estimates, we can run the simulation

until the length of the non-parametric confidence interval is below a pre-specified

threshold as an alternative the approach in (4.4). In our examples, a non-parametric

approach to stopping the simulation was not implemented.

Toy Example Revisited

The toy example introduced in Section 1.3.2 will be used to illustrate the use of

subsampling. Consider estimating the median of the conditional distribution of µ|y,

denotedM and the median of the conditional distribution of λ|y, denoted L. A routine

calculation yields M = 1 (see Section 1.7.1). However, L cannot be easily calculated.

Instead, the integrate function was used in R to calculate L = 1.6780871. (This

calculation yielded an absolute error of 5.5× 10−6 for Prπ(λ < L) and 3.3× 10−6 for

Prπ(λ > L).) Again, the output from the Gibbs sampler introduced earlier will be

used estimate M and L. Further, subsampling will be used to assess the Monte Carlo

error.

Consider estimating M and L with M̂ and L̂, the sample median of the output

for each variable from the Gibbs sampler and using subsampling methods to calculate
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(a) SUB1, with a cutoff of ε = 0.06.
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(b) SUB2, with a cutoff of ε = 0.04.
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(d) GRD3, 2 chains and δ = 1.005.
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(e) GRD2, 4 chains and δ = 1.1.
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(f) GRD4, 4 chains and δ = 1.005.

Figure 4.2: Histograms from 1000 replications estimating M for the toy example of
Section 1.3.2 with SUB and GRD. Simulation sample sizes are given in Table 4.3.
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an MCSE. We performed 1000 independent replications of the following procedure.

Each replication of the Gibbs sampler was started from ȳ and run for a minimum of

400 iterations. A replication was terminated when

tn−bn

σ̂SUB√
n

+ εI(n < 400) ≤ ε (4.5)

for each of the parameters of interest. Again, tn−bn is an appropriate quantile from

Student’s t distribution with n− bn degrees of freedom and ε > 0 is the user-specified

half-width. If the maximum half-width was not less than the cutoff, then 10% of the

current chain length was added to the simulation before checking again. We used two

settings for the cutoff, ε = 0.06 and ε = 0.04 denoted SUB1 and SUB2 respectively.

Figures 4.2a and 4.2b show the results from the simulation for estimating M .

We can see that this proposed procedure performs well. Looking only at SUB2,

Figure 4.3a shows the total length of chain used varies from 1509 to 4722 resulting in

“good” estimates of M with a limited number of draws. Plots for estimating L lead

to similar conclusions and are therefore omitted.

Table 4.1 summarizes the observed proportion of parametric confidence intervals

based on (4.5) and a non-parametric confidence intervals based on (4.2) containing

the true values of M and L. We can see all the results are close to the nominal 0.95

level. Here, the parametric intervals have a higher coverage in every case, though

some of the non-parametric intervals are closer to the nominal value.

4.2.2 The Gelman-Rubin Diagnostic

Recall the Gelman-Rubin diagnostic (Gelman and Rubin, 1992; Brooks and Gelman,

1998) introduced in Chapter 1. For practitioners, this seems to be the most pop-

ular method for assessing the output of MCMC algorithms. This method is only

appropriate when θ = Eπg, hence SUB applies much more generally.
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Figure 4.3: Estimating M for the toy example of Section 1.3.2. Estimates of M versus
number of draws for the SUB2 and GRD4 settings.

Parametric C.I.
M L

SUB1 0.952 (0.0068) 0.946 (0.0072)
SUB2 0.965 (0.0058) 0.959 (0.0063)

Non-Parametric C.I.
M L

SUB1 0.931 (0.008) 0.917 (0.0087)
SUB2 0.949 (0.007) 0.932 (0.008)

Table 4.1: Summary of the proportion of replications when the true parameter value
fell within a parametric and non-parametric confidence interval for estimating M and
L for the Toy Example.
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The starting point for GRD is the simulation of m independent parallel Markov

chains having invariant distribution π, each of length 2l. Thus the total simulation

effort is 2lm. The first l simulations are usually discarded and the inference is based

on the last l simulations.

It is unclear how to implement GRD when θ is a quantile. The most obvious

method is using the same stopping criteria used when trying to estimate Eπg. Specif-

ically, based on the user provides a cutoff, δ > 0, the simulation continues until

R̂0.975 + p(n) ≤ δ ,

where R̂0.975 is defined in Section 1.4.2. As with fixed-width methods, the role of p(n)

is to ensure that we do not stop the simulation prematurely due to a poor estimate.

By requiring a minimum total simulation effort of n∗ = 2lm, we are effectively setting

p(n) = δI(n ≤ n∗) where n indexes the total simulation effort. Again, we are left

with the same practical implementation issues as when θ = Eπg (see Section 1.4.2).

In addition, there is no reason to believe that R̂ ≈ 1 implies that the quantile of

g(Xij) is a good estimate of true quantile of interest.

Toy Example

As before, the initial values when implementing GRD should be drawn from an “over-

dispersed” distribution. However, we can sequentially sample the exact distribution

of interest (see Section 1.7.1) to obtain starting values for the GRD method. Since

we have started with a draw from the stationary distribution, the resulting marginal

distribution for each Xi is the same as the stationary distribution.

To perform the GRD calculations, we took multiple chains starting from different

draws from the sequential sampler. The multiple chains were started such that the

total simulation effort was 400 draws, then the R̂0.975 was calculated for each param-
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Stopping MSE for MSE for
Method Chains Rule M S.E. L S.E.
SUB1 1 0.06 0.000165 7.6e-06 0.000911 4e-05
SUB2 1 0.04 7.09e-05 3.2e-06 0.000373 1.7e-05
GRD1 2 1.1 0.00103 4.6e-05 0.00541 0.00027
GRD2 4 1.1 0.000998 4.9e-05 0.00512 0.00023
GRD3 2 1.005 0.000461 3.1e-05 0.00238 0.00016
GRD4 4 1.005 0.000179 1.2e-05 0.000969 8e-05

Table 4.2: Summary table for all settings and estimated mean-squared-error for esti-
mating M and L for the toy example of Section 1.3.2.

eter of interest and compared to a pre-specified value, ε. If the largest R̂0.975 < ε, the

simulation was stopped. Otherwise, 10% of the current chain length was added to

each chain before R̂0.975 was recalculated. This continued until the maximum R̂0.975

was below ε. This simulation procedure was repeated independently 1000 times start-

ing from the same starting points. The settings considered were all combinations of

2 and 4 chains with δ1 = 1.1 proposed by Gelman et al. (2004) and δ2 = 1.005 in the

hope of obtaining more precise estimates. Table 4.2 lists the different settings.

Upon completion of the simulation, M̂ and L̂ were recorded. Figures 4.2c-4.2f

show histograms of M̂ for each of the four settings using GRD. We can see that all

the settings center around the true value of 1, and the use of the more stringent

cut-off of 1.005 provides better estimates. Increasing the number of chains seems

to have little impact on the quality of estimation using a cut-off of 1.1. However,

with a cut-off of 1.005, we can see the histograms are narrower when more chains are

used. The histograms of L̂ are not shown, but careful examination leads to the same

conclusions.

Let’s focus our attention on the case of GRD4 where we have 4 chains and a cut-off

of 1.005. Figure 4.3b show a plot of M̂ versus the total number of draws in the chains,
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Prop. Prop.
Method at Min. S.E. ≤ 1000 S.E. N S.E.
SUB1 0 0 0.075 0.0083 1385 8.7
SUB2 0 0 0 0 3059 16
GRD1 0.576 0.016 0.987 0.0036 469 4.1
GRD2 0.587 0.016 0.993 0.0026 471 4.2
GRD3 0.062 0.0076 0.363 0.015 2300 83.5
GRD4 0.01 0.0031 0.083 0.0087 5365 150.5

Table 4.3: Summary of the proportion (and standard error) of the observed estimates
which were based on the minimum number (400) of draws, less than or equal to 1000
draws, and the average total simulation effort for the toy example in Section 1.3.2.

N. The plot clearly shows as the total number of draws increase, the quality of the

estimate increases. The plot also illustrate that the total number of draws was highly

variable using GRD. Similar to the results estimating means in Chapter 1, this implies

that we are likely to run a simulation either too long or too short. Table 4.3 shows

the proportion of the 1000 simulations which were stopped at their minimums and

the proportion with less than 1000 total draws. This clearly shows that premature

stopping was evident in all the settings for GRD, but was particularly bad using only

2 chains or a cut-off of 1.1. For example, looking at Figure 4.2f we can see GRD4

with the smallest cut-off and the most chains still has a number of the estimates are

far from the actual value of 1.

4.3 Examples

4.3.1 Toy Example Continued

In this section, we will directly compare SUB to GRD in terms of mean-squared error

(MSE) and chain length to estimate M and L. To this end we ran 1000 independent

replications of the simulation procedure outlined above for each method. Table 4.3
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shows the percentage of time the estimates of M and L were based on both the mini-

mum and 1000 draws or less. We can see from this, that using GRD as a stopping rule

tends to stop the simulation prematurely in a significant portion of the simulations.

In our experience, the time it took to run one replication with a similar number

of draws was approximately equivalent for GRD and SUB. Therefore, we will use N ,

the total chain length, as a measure of the computational effort. Looking closely at

SUB2 and GRD4, we can see that the average number of draws are 3059 and 5365

from Table 4.3. In this case, SUB2 is using less than 60% of draws required for GRD4.

However, if we look at the quality of the estimation of M and L by comparing MSEs,

we can see that the MSEs for GRD4 are 2.5 times higher than SUB2 for estimating

M , and 2.6 times higher for estimating L (see Table 4.2). Again, it is clear the results

using SUB are superior to those using GRD. In addition, SUB allows us to work with

the actual parameter we are interested in, and provides a method to estimate the

standard errors.

However, remember for this toy example we are using a sequential sampler to

draw from the true distribution implying no burn-in is needed at all to implement

GRD method (in this specific setting). Taking this into account, we can recalculate

the estimates ignoring burn-in by using the entire chain length. For estimating M , we

can calculate the MSE of 9.99× 10−5 for GRD4 with a standard error of 7.8× 10−6,

resulting in GRD4 having a MSE 1.4 times larger than SUB2. For estimating L, the

MSE from GRD4 is 0.000473 with a standard error of 3.6× 10−5, resulting in GRD4

having an MSE 1.3 times higher than that of SUB2. This difference is not significant

based on the standard errors, but if the simulation efforts were equal, the results

would certainly be significant. Now, we can see SUB is still a superior method for

estimating M and L because of the variable total sample size related to using GRD.
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i y x i y x
1 −0.2649 −0.0083 11 −0.3447 0.0298
2 −0.1552 0.4994 12 1.7768 1.6694
3 −2.5194 −0.1883 13 0.5059 0.5349
4 −0.8693 −0.3308 14 0.1383 0.9383
5 −0.7272 −0.7908 15 2.0452 0.2940
6 −3.0486 −1.9435 16 −1.9861 −0.4860
7 0.5511 0.0880 17 −0.3182 −0.2256
8 1.7590 1.9856 18 −2.3956 −1.9250
9 −1.0116 −0.5404 19 −2.5586 −1.0142
10 0.0094 0.3795 20 1.2208 0.7291

Table 4.4: Simulated data for block Gibbs example.

4.3.2 Block Gibbs Numerical Example

The goal of this example is to compare the finite sample properties obtained using

BM to SUB. To this end, we will estimate the posterior means for β, λR and λD

(denoted E(β|y), E(λR|y), and E(λD|y) respectively), calculate the MCSEs with the

two methods, and compare the results. In the case of estimating means, the estimate

from SUB is simply equal to the estimate of OBM. Additionally, we will illustrate the

use of SUB estimation of the median and first quartile for the three distributions of

interest. The medians will be denoted β(0.50), λ
(0.50)
R , and λ

(0.50)
D . The first quartiles

will be denoted β(0.25), λ
(0.25)
R , and λ

(0.25)
D . Application of the Markov chain CLT and

BM require geometric ergodicity and finite moment conditions. Geometric ergodicity

for the block Gibbs sampler was shown in Section 2.3.1 and, for now, we will assume

the proper moment conditions have been met for our settings to implement BM and

OBM. The theoretical justification for SUB is a future research direction.

First, we simulated the data in Table 4.4 with the model from Section 2.3.1 with

n = 20, λR = λD = 4 and covariate X ∼ N(0, I20). Then, using the block Gibbs

sampler with prior settings r1 = r2 = d1 = d2 = 4, we estimated the true value for
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Method E(β|y) S.E. E(λR|y) S.E. E(λD|y) S.E.
BM 1.1897 0.0003 1.2106 0.0003 1.5417 0.0004
SUB 1.1891 0.0012 1.2113 0.0013 1.5398 0.0016

Method β(0.50) S.E. λ
(0.50)
R S.E. λ

(0.50)
D S.E.

SUB 1.1917 0.0015 1.1463 0.0014 1.4695 0.0017

Method β(0.25) S.E. λ
(0.25)
R S.E. λ

(0.25)
D S.E.

SUB 0.7916 0.0016 0.8677 0.0012 1.1533 0.0015

Table 4.5: Estimates for the nine quantities in the hierarchical example in Sec-
tion 2.3.1. Calculations from BM are based on 4 × 106 iterations in the chain and
subsampling calculations are based on 250,000 iterations in the chain. The standard
errors (S.E.) for each of the observed quantities are included.

each of the three mean parameters, E(β|y), E(λR|y), and E(λD|y), based on 4× 106

iterations in the Markov chain. We are going to consider these estimates to be the

“truth”. Table 4.5 shows the numerical values of the parameters. In addition, we

calculated the MCSE of these estimates using BM. Similarly, we estimated the true

value for the median and first quartile parameters using 250,000 iterations from the

Markov chain and calculated the MCSEs of these estimates using SUB. It’s easy to

see that the MCSEs are very small for BM and relatively small for SUB. These will

be kept in mind when selecting ε for the fixed-width procedure that follows.

Consider the Markov chain {ξ1, . . . , ξm}. We estimated the posterior means for β,

λR and λD with β̄m, λ̄Rm and λ̄Dm respectively and calculated the MCSE. Using BM,

we performed 500 independent replications of a procedure similar to that employed

in the toy example. First, each replication of the Gibbs sampler was started from the

same point and run for a minimum of 400 iterations. A replication was terminated

when the half-width of a 95% interval for each parameter of interest (three total) was

below a pre-specified cutoff. The equation for a half-width using BM is given in (3.4).

If the largest standard error was not less than the cutoff, then 10% of the current

chain length was added to the chain before checking again. We used three settings
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Mean
Method ε half-width S.E. N S.E.
BM1 0.06 0.056394 0.00013 754 7.4
BM2 0.04 0.037746 7.6e-05 1683 15.4
BM3 0.02 0.019078 3.1e-05 6646 47.2
SUB1 0.06 0.05813 5.6e-05 946 6.8
SUB2 0.04 0.038801 3.4e-05 2088 14.1
SUB3 0.02 0.019478 1.6e-05 8142 38.6

Table 4.6: Summary table for all settings considered in the hierarchical example
in Section 2.3.1. This table also gives the mean observed value of the half-width
and number of iterations. Both are reported with standard errors in the additional
column.

for the cutoff for each method, ε1 = 0.06, ε2 = 0.04, and ε3 = 0.02. These settings

will be denoted BM1, BM2, and BM3 respectively for BM.

Using subsampling, we employed the same basic procedure, but in addition to

estimating the posterior means, we estimated β(0.50), λ
(0.50)
R , λ

(0.50)
D , β(0.25), λ

(0.25)
R , and

λ
(0.25)
D , nine total quantities. A replication was terminated when the half-width for a

95% interval for each of the nine parameters was below the pre-specified cutoff. The

SUB half-widths were calculated as in (4.5). We used the same three cutoffs as above,

and denoted them SUB1, SUB2, and SUB3.

First, we will directly compare BM to SUB for estimating the three posterior

means using the MSEs and the overall chain length. Looking at histograms (not

shown) for each situation, we see they are centered around the calculated “truth”.

Table 4.6 summarizes the mean largest half-width and mean iterations for each set-

ting when the replication was terminated. We can see, for equal ε settings, that

subsampling ran slightly longer than BM. This is based on the fact that we are esti-

mating nine parameters with subsampling and only three with BM. In this example,

the subsampling processing time was appreciably slower than BM. This is most likely

a result of inefficient code, though this issue warrants further attention.
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MSE for MSE for MSE for
Method ε E(β|y) S.E. E(λR|y) S.E. E(λD|y) S.E.
BM1 0.06 0.000597 4.1e-05 0.000511 3.1e-05 0.000933 6.1e-05
BM2 0.04 0.000259 1.6e-05 0.000264 1.9e-05 0.000404 2.5e-05
BM3 0.02 5.83e-05 3.7e-06 5.5e-05 3.4e-06 9.19e-05 5.8e-06
SUB1 0.06 0.00044 2.7e-05 0.000419 2.6e-05 0.000691 4.4e-05
SUB2 0.04 0.000203 1.4e-05 0.00021 1.3e-05 0.000314 2.1e-05
SUB3 0.02 5.3e-05 3.5e-06 4.83e-05 2.9e-06 8.61e-05 5e-06

MSE for MSE for MSE for

Method ε β(0.50) S.E. λ
(0.50)
R S.E. λ

(0.50)
D S.E.

SUB1 0.06 0.000609 4.1e-05 0.000516 3.4e-05 0.000781 4.9e-05
SUB2 0.04 0.00024 1.6e-05 0.000239 1.6e-05 0.000342 2.3e-05
SUB3 0.02 7.03e-05 4.7e-06 5.93e-05 3.7e-06 0.000107 5.9e-06

MSE for MSE for MSE for

Method ε β(0.25) S.E. λ
(0.25)
R S.E. λ

(0.25)
D S.E.

SUB1 0.06 0.000802 5e-05 0.000446 3e-05 0.000645 4.2e-05
SUB2 0.04 0.000351 2.3e-05 0.000224 1.5e-05 0.000278 1.9e-05
SUB3 0.02 9.11e-05 5.6e-06 4.52e-05 2.7e-06 7.6e-05 4.9e-06

Table 4.7: Summary of replications for estimating the nine parameters of interest
for the Hierarchical example in Section 2.3.1 based on 500 independent replications.
Standard errors (S.E.) are listed for each of the quantities.
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Table 4.7 shows the calculated MSEs for the two different methods. Notice that

for equal settings for ε, we can see that the MSEs from BM and SUB are approxi-

mately equal. For ε1 = 0.06 and ε2 = 0.04, confidence intervals for the MSE of BM

(based on the standard error) do not contain observed MSE for SUB. However, sub-

sampling is using more iterations for equal ε because it is estimating nine quantities

rather than three. For ε3 = 0.02, the two methods are not statistically different,

based on the same reasoning. We can also compare the BM and SUB by looking

at the univariate parametric confidence intervals for each replication. For 17 of the

possible 18 combinations, the proportion of intervals containing the true parameter is

within two standard errors of the nominal value of 0.95. The exception is BM1 when

estimating E(λD|y). In this case the proportion of intervals is 0.922 with a standard

error of 0.012, so the estimate is within 2.5 standard errors of the mean. This is still

a very reasonable result considering we have 18 total combinations.

The final results using BM and SUB are very similar in this case. The benefit of

using BM is the moderately faster computational time, while SUB will enjoy a lower

asymptotic variance (because of the relationship with OBM shown in Section 3.2.3).

In the case of estimating ergodic averages, both methods enjoy checkable theoretical

conditions to ensure consistent estimators. However, as mentioned, BM will not allow

us to calculate MCSEs for estimating quantiles, this will require SUB.

Now, we will illustrate the use of subsampling for estimating univariate quantiles

of the posterior distribution. The six parameters of interest are β(0.50), λ
(0.50)
R , λ

(0.50)
D ,

β(0.25), λ
(0.25)
R , and λ

(0.25)
D . Again, histograms (not shown) for each situation show

nothing alarming, with the estimates centered around the true value in each case.

Table 4.7 shows the MSEs for estimating the quantile parameters are on the same

order of magnitude as those from estimating the mean parameters. Looking at the

univariate parametric confidence intervals, the observed coverage probabilities of all

18 were within two standard errors of the nominal 0.95 value. For this example, sub-
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sampling is doing the “right” thing for estimating means and quantiles, and provides

a method to calculate MCSEs in both of these cases.

4.3.3 Discussion

As we have seen in our examples, subsampling methods seem to work well estimating

quantiles in finite sample settings. There are a number of future directions for this

research. A substantial project would be to extend the ideas for ergodic averages

in Chapter 3 to quantiles, and further to general quantities, via subsampling meth-

ods. Specifically, can the work from Politis et al. (1999) be translated into checkable

conditions for MCMC practitioners? The use of subsampling also allows calculating

non-parametric confidence intervals as in (4.2). Do these intervals ensure asymptot-

ically valid confidence intervals using fixed-width methods? Further research is also

needed in the case of establishing checkable conditions for limiting distributions for

quantities that cannot be expressed as ergodic averages. Here, the work of Carlstein

(1986) provides an excellent starting point, but more work is necessary. Finally, and

potentially most importantly, there is a culture in MCMC literature of rarely report-

ing MCSEs for the quantities of interest, including quantiles. Hence, further work is

necessary in applying the results in this thesis to important real problems seen by

practitioners.





Appendix A

Supplementary Material

A.1 Brownian Motion

Brownian motion is central to some of the proofs throughout this discussion. Recall

that Brownian motion is a continuous process with independent, stationary, and

normally distributed increments. Throughout this thesis, we will let B = {B(t), t ≥

0} denote a standard Brownian motion process, hence B(t)− B(s) ∼ N(0, t− s) for

all 0 ≤ s < t. For ease of exposition, define B̄j(k) := k−1(B(j + k) − B(j)) and

B̄n := n−1B(n) throughout this section. Further define Ui := B(i)− B(i− 1) as the

increments of Brownian motion between times i and i − 1, then U1, . . . , Un are i.i.d.

N(0, 1).

In this work, we will be particularly interested in Law of Iterated Logarithm (LIL)

type results from Csörgő and Révész (1981) on the increments of Brownian motion.

The following two lemmas will be used in future sections.

Lemma 15. (Csörgő and Révész, 1981) For all ε > 0 and for almost all sample paths

there exists n0(ε) such that for all n ≥ n0

|B(n)| < (1 + ε) [2n log log n]1/2 . (A.1)

139
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Lemma 16. (Damerdji, 1994, Lemma 7.1.2) Suppose Assumption 2 holds, then for

all ε > 0 and for almost all sample paths, there exists n0(ε) such that for all n ≥ n0

sup
0≤t≤n−bn

sup
0≤s≤bn

|B(t+ s)−B(t)| < (1 + ε)

(
2bn

(
log

n

bn
+ log log n

))1/2

.

Corollary 3. (Damerdji, 1994, p. 508) For all ε > 0 and for almost all sample paths,

there exists n0(ε) such that for all n ≥ n0

|B̄j(an)| ≤
√

2(1 + ε)a−1/2
n

(
log

n

an

+ log log n

)1/2

, (A.2)

where B̄j(an) = a−1
n (B((j + 1)an)−B(jan)).

A.1.1 Results for Spectral Variance

Define

σ̃2
∗ = n−1

n−bn∑
j=0

bn∑
k=1

αn(k)(B̄j(k)− B̄n)2 .

For ease of exposition, let Ti = Ui − B̄n for i = 1, . . . , n and further define

γ̃n(s) = n−1

n−s∑
t=1

UtUt+s for s = 1, . . . , n ,

f̃n(0) =
1

2π

bn−1∑
s=−(bn−1)

wn(s)γ̃n(s) , and

d̃n = n−1

([
bn∑
l=1

∆1wn(l)

(
l−1∑
i=1

T 2
i +

n∑
i=n−bn+l+1

T 2
i

)]

+ 2
bn−1∑
s=1

[
bn−s∑
l=1

∆1wn(s+ l)

(
l−1∑
i=1

TiTs+i +
n−s∑

i=n−bn+l+1

TiTs+i

)])
.

Proposition 7. Suppose Assumptions 1 and 2 hold. Further assume
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1. there exists a constant c ≥ 1 such that
∑

n(bn/n)c <∞,

2. bnn
−1 log n→ 0 as n→∞,

3.

bnn
−1

bn∑
k=1

k |∆1wn(k)| → 0 as n→∞ ,

4. and b−1
n log n stays bounded as n→∞.

Then σ̃2
∗ → 1 as n→∞.

Proof. Proposition 3 shows,

σ̃2
∗ = 2πf̃n(0)− d̃n .

Lemma 17 shows 2πf̃n(0) → 1 and Lemma 19 shows d̃n → 0 as n → ∞. Thus,

combining all of these yield the desired result.

Lemma 17. (Damerdji, 1991, Theorem 4.1) Suppose Assumptions 1 and 2 hold.

Further assume

1. there exists a constant c ≥ 1 such that
∑

n(bn/n)c <∞, and

2. bnn
−1 log n→ 0 as n→∞.

Then 2πf̃n(0) → 1 as n→∞ w.p.1.

Proof. This proof appears in Damerdji (1991) but it is expanded on here for clarity.

First, notice that

2πf̃n(0) =
bn−1∑

i=−(bn−1)

wn(i)γ̃n(i)

= γ̃n(0) + 2
bn−1∑
i=1

wn(i)γ̃n(i) .
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Since U1, . . . , Un are i.i.d. N(0, 1), the classical Strong Law of Large Numbers implies

that γ̃n(0) → 1 as n→∞ w.p.1. Hence, it suffices to show that
∑bn−1

i=1 wn(i)γ̃n(i) → 0

as n→∞ w.p.1. Then we can write for i ≤ n

γ̃n(i) = n−1

n−i∑
t=1

(Ut − B̄n)(Ut+i − B̄n)

= n−1

[
n−i∑
t=1

UtUt+i + (n− i) B̄2
n − B̄n

n−i∑
t=1

(Ut + Ut+i)

]

= n−1

n−i∑
t=1

UtUt+i −
(

1 +
i

n

)
B̄2

n + 2B̄2
n − n−1B̄n

n−i∑
t=1

(Ut + Ut+i)

= n−1

n−i∑
t=1

UtUt+i −
(

1 +
i

n

)
B̄2

n + B̄nn
−1 [B(i) + (B(n)−B(n− i))] ,

resulting in

bn−1∑
i=1

wn(i)γ̃n(i) =
bn−1∑
i=1

wn(i)n−1

n−i∑
t=1

UtUt+i − B̄2
n

bn−1∑
i=1

wn(i)

(
1 +

i

n

)

+ B̄nn
−1

bn−1∑
i=1

wn(i) [B(i) + (B(n)−B(n− i))] . (A.3)

We will now show that each of the three terms in (A.3) tend to 0 separately.

1. Here we will show that

bn−1∑
i=1

wn(i)n−1

n−i∑
t=1

UtUt+i → 0 as n→∞ w.p.1. (A.4)

To this end, we will use a Borel-Cantelli argument with condition 1. It suffices

to show

E

(bn−1∑
i=1

wn(i)n−1

n−i∑
t=1

UtUt+i

)2a
 = O

(
bn
n

)a

, (A.5)

where the symbol “O” is the Big-Oh notation, which means there exists n0 and
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a constant C > 0 such that∣∣∣∣∣∣E
(bn−1∑

i=1

wn(i)n−1

n−i∑
t=1

UtUt+i

)2c
∣∣∣∣∣∣ ≤ C(bn/n)c

for all n > n0. Then since

∞∑
m=1

C

(
bn0+m

n0 +m

)c

<∞

using condition 1, (A.4) holds via Borel-Cantelli.

Now we will show that (A.5) holds for any positive integer c ≥ 2 using the

following lemma.

Lemma 18. (Damerdji, 1991, Corollary 4) For a sequence of i.i.d. standard

normal variables {Un : n ≥ 1} where A =
∑

j

∑
k ajkujuk, then for c ≥ 2 we

have

E
[
|A− EA|2c

]
≤ K(c)

(∑
j

∑
k

a2
jk

)c

,

for some constant K(c) depending only on c.

If we then let D(n) be the n× n matrix with entries,

Di,j(n) =

n
−1wn(j − i) for i < j ,

0 otherwise.
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Define U := (U1, . . . , Un)T , then by construction of the matrix D(n)

A(n) = U ′D(n)U

=
n∑

t=1

Ut

t−1∑
i=1

n−1wn(i)Ut−i

=
n−1∑
i=1

n∑
t=i+1

n−1wn(i)Ut−iUt

=
n−1∑
i=1

wn(i)n−1

n−i∑
t=1

UtUt+i

=
bn−1∑
i=1

wn(i)n−1

n−i∑
t=1

UtUt+i

where the last step results from the fact that wn(s) = 0 for all |s| ≥ bn.

Recall U1, . . . , Un are i.i.d. N(0, 1), then EA(n) = 0 since EUtUt+i = 0 for i ≥ 1,

and we can apply Lemma 18 as follows

E

(bn−1∑
i=1

wn(i)n−1

n−i∑
t=1

UtUt+i

)2c
 ≤ K(c)

(∑
j

∑
k

a2
jk

)c

where the coefficients ajk are the elements of the matrix D(n), and K(c) is a

constant in c. Now we can see that

∑
j

∑
k

a2
jk = n−2

bn−1∑
i=1

(n− i)w2
n(i) ≤ n−1

bn−1∑
i=1

w2
n(i) ≤ bnn

−1

and hence, we have shown the relationship in (A.5), implying the first term in

(A.3) tends to 0 as n→∞.
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2. From Assumption 1, the fact that 1 + i/n ≤ 2, and (A.1), it follows that

0 ≤ B̄2
n

∣∣∣∣∣
bn−1∑
i=1

wn(i)

(
1 +

i

n

)∣∣∣∣∣ ≤ 2bnB̄
2
n

≤ 2bnn
−2(1 + ε)22n log log n = 4(1 + ε)2bnn

−1 log log n→ 0 ,

as n→∞ by condition 2.

3. Again, we will use the LIL type results from Appendix A.1, specifically we will

apply Lemma 16. For 1 ≤ i ≤ bn,

|B(i) + (B(n)−B(n− i))| ≤ sup
0≤s≤bn

|B(s)|+ sup
0≤s≤bn

|B(n)−B(n− s)|

≤ sup
0≤t≤n−bn

sup
0≤s≤bn

|B(t+ s)−B(t)|

+ sup
0≤s≤bn

|B(n)−B(n− s)|

≤ 2(1 + ε)

(
2bn

(
log

n

bn
+ log log n

))1/2

.

Therefore, from Lemma 15 and the above relationship,∣∣∣∣∣B̄nn
−1

bn−1∑
i=1

wn(i) [B(i) + (B(n)−B(n− i))]

∣∣∣∣∣
≤ 4n−2(1 + ε)2 (n log log n)1/2 bn

(
bn

(
log

n

bn
+ log log n

))1/2

= O(b3/2
n n−3/2 log n) .

Hence, the above will go to 0 as a result of Assumption 2 and condition 2.
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Lemma 19. (Damerdji, 1991, Proposition 4.3) Suppose Assumptions 1 and 2 hold.

If

1.

bnn
−1

bn∑
k=1

k |∆1wn(k)| → 0 as n→∞

2. and b−1
n log n stays bounded as n→∞.

Then d̃n → 0 as n→∞ w.p.1.

Proof. Recall Ti = Ui − B̄n for i = 1, . . . , n and

d̃n = n−1

([
bn∑
l=1

∆wn(l)

(
l−1∑
i=1

T 2
i +

n∑
i=n−bn+l+1

T 2
i

)]

+ 2
bn−1∑
s=1

[
bn−s∑
l=1

∆wn(s+ l)

(
l−1∑
i=1

TiTs+i +
n−s∑

i=n−bn+l+1

TiTs+i

)])
,

We will procede similarly to the proof of Lemma 10.

1. We can bound |d̃n| as before

d̃n ≤ b−1
n

(
bn∑
i=1

T 2
i +

n∑
i=n−bn+1

T 2
i

)
(A.6)

× n−1bn

(
bn∑
l=1

|∆wn(l)|+ 2
bn∑

k=1

k |∆wn(k)|

)
. (A.7)

Again, (A.7) tends to 0 as n → ∞ by condition 1. Hence, it suffices to show

that (A.6) is bounded w.p.1.

2. The classical strong law of large numbers implies the sums
∑bn

i=1 Ui and
∑bn

i=1 U
2
i

stay bounded w.p.1. Then we can apply the same argument as above to show

the contribution from the starting effects stay bounded for d̃n.



A.1. Brownian Motion 147

3. Finally, we are left to show that the sums contributed from the terminating end

effects stay bounded, or b−1
n

∑n
i=n−bn+1 T

2
i < ∞ as n → ∞. Using the same

technique as before, it suffices to show b−1
n

∑n
i=n−bn+1 Ui and b−1

n

∑n
i=n−bn+1 U

2
i

stay bounded. We have b−1
n

∑n
i=n−bn+1 Ui = b−1

n (B(n)−B(n− bn)), which stays

bounded by Lemma 16 and condition 2. As for b−1
n

∑n
i=n−bn+1 U

2
i , we will use

the following strong invariance principle. Komlós et al. (1975), Komlós et al.

(1976), and Major (1976) have shown in the i.i.d. case, that if E[exp |tX1|] <∞

in a neighborhood of t = 0, then

Sn − nµ = σB(n) +O(log n) w.p.1

where the log n rate is extremely sharp. Since U1, . . . , Un are i.i.d. N(0, 1) the

sequence U2
1 , . . . U

2
n are i.i.d. χ2

1. This implies that∣∣∣∣∣
n∑

i=1

U2
i − n− 2B(n)

∣∣∣∣∣ ≤ C ′ log n ,
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resulting in

b−1
n

∣∣∣∣∣
n∑

i=n−bn+1

U2
i

∣∣∣∣∣ = b−1
n

∣∣∣∣∣
n∑

i=1

U2
i −

n−bn∑
i=1

U2
i

∣∣∣∣∣
= b−1

n

∣∣∣∣∣
(

n∑
i=1

U2
i − n− 2B(n)

)

−

(
n−bn∑
i=1

U2
i − (n− bn)− 2B(n− bn)

)

+ 2 (B(n)−B(n− bn)) + bn

∣∣∣∣∣
≤ b−1

n

(
2C ′ log n+ (1 + ε)

(
2bn

(
log

n

bn
+ log log n

))1/2

+ bn

)
= 1 + 2C ′b−1

n log n+O
(
(b−1

n log n)1/2
)

w.p.1.

Hence, b−1
n

∣∣∑n
i=n−bn+1 U

2
i

∣∣ stays bounded w.p.1 from condition 2.

Thus the proof is complete.

A.1.2 Results for Overlapping Batch Means

As shown previously, OBM is a special case of a SV estimator. In this section, we

will show σ̃2(n) → 1 w.p.1 where

σ̃2(n) = bnn
−1

n−bn∑
j=0

(
B̄j(k)− B̄n

)2
under less stringent conditions than Proposition 7.

The following lemma from Kendall and Stuart (1977) is required.

Lemma 20. If Z ∼ χ2
v, then for all positive integers r there exists a constant K :=

K(r) such that E [(Z − v)2r] ≤ Kvr.
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Proposition 8. Assume Assumption 2 and (a) there exists a constant c ≥ 1 such that∑
n(bn/n)c < ∞; (b) bnn

−1 log n → 0 as n → ∞; and (c) n−3/2b2n → 0 as n → ∞,

then as n→∞, σ̃2(n) → 1 w.p.1.

Proof. Let wn(k) = 1− |k|/bn for |k| < bn and 0 otherwise, the modified Bartlett lag

window. Consider αn(k) := k2∆2wn(k) is a sequence of weights where ∆2wn(k) =

wn(k − 1)− 2wn(k) + wn(k + 1). Recall that

σ̃2(n) = bnn
−1

n−bn∑
j=0

(
B̄j(k)− B̄n

)2
= n−1

n−bn∑
j=0

bn∑
k=1

αn(k)
(
B̄j(k)− B̄n

)2
.

Using this representation, Proposition 3 in Section 3.4.2 shows there exists a sequence

d̃n due to some end effects, such that

σ̃2(n) = 2πf̃n(0)− d̃n .

Lemma 17 shows 2πf̃n(0) → 1 as n → ∞ w.p.1. Using the modified Bartlett lag

window, Lemma 21 shows d̃n → 0 as n → ∞ w.p.1. Combining these yield the

desired result.

Lemma 21. Suppose Assumption 2 holds and wn(k) = 1− |k|/bn for |k| < bn and 0

otherwise. If

1. there exists a constant c ≥ 1 such that
∑

n(bn/n)c <∞;

2. b−1
n log n stays bounded as n→∞;

3. and n−3/2b2n → 0 as n→∞.

Then d̃n → 0 as n→∞ w.p.1.
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Proof. Recall Ti = Ui − B̄n for i = 1, . . . , n. Using the Bartlett lag window and the

definition of d̃n,

|d̃n| = n−1

∣∣∣∣∣
[

bn∑
l=1

∆wn(l)

(
l−1∑
i=1

T 2
i +

n∑
i=n−bn+l+1

T 2
i

)]

+ 2
bn−1∑
s=1

[
bn−s∑
l=1

∆wn(s+ l)

(
l−1∑
i=1

TiTs+i +
n−s∑

i=n−bn+l+1

TiTs+i

)]∣∣∣∣∣
≤ n−1

∣∣∣∣∣
bn∑
l=1

b−1
n

(
l−1∑
i=1

T 2
i +

n∑
i=n−bn+l+1

T 2
i

)∣∣∣∣∣ (A.8)

+ n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

TiTs+i +
n−s∑

i=n−bn+l+1

TiTs+i

)∣∣∣∣∣ . (A.9)

We will show that (A.8) and (A.9) each tend to zero implying the desired result.

First consider (A.8),

n−1

∣∣∣∣∣
bn∑
l=1

b−1
n

(
l−1∑
i=1

T 2
i +

n∑
i=n−bn+l+1

T 2
i

)∣∣∣∣∣ ≤ n−1

∣∣∣∣∣
bn∑
l=1

b−1
n

(
bn−1∑
i=1

T 2
i +

n∑
i=n−bn+2

T 2
i

)∣∣∣∣∣
= n−1

∣∣∣∣∣
bn−1∑
i=1

T 2
i +

n∑
i=n−bn+2

T 2
i

∣∣∣∣∣
= n−1

∣∣∣∣∣
bn−1∑
i=1

(
Ui − B̄n

)2
+

n∑
i=n−bn+2

(
Ui − B̄n

)2∣∣∣∣∣
≤ n−1

∣∣∣∣∣
bn−1∑
i=1

U2
i +

n∑
i=n−bn+2

U2
i

∣∣∣∣∣
+ n−1

∣∣∣∣∣2B̄n

(
bn−1∑
i=1

Ui +
n∑

i=n−bn+2

Ui

)∣∣∣∣∣
+ n−1

∣∣2(bn − 1)B̄2
n

∣∣ .
Now we show that each of the three terms above tend to zero.

1. Since U2
1 , . . . U

2
n are i.i.d. χ2

1,
∑bn−1

i=1 U2
i +
∑n

i=n−bn+2 U
2
i ∼ χ2

2(bn−1). By Lemma 20
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we have

E

(bn−1∑
i=1

U2
i +

n∑
i=n−bn+2

U2
i − 2(bn − 1)

)2c
 ≤ K (2(bn − 1))c ,

and

E

(n−1

(
bn−1∑
i=1

U2
i +

n∑
i=n−bn+2

U2
i

)
− 2(bn − 1)

n

)2c
 ≤ K

(
2(bn − 1)

n2

)c

.

By assumption there exists a constant c ≥ 1 such that
∑

n(bn/n)c <∞ and

∑
n

K

(
2(bn − 1)

n2

)c

<∞ .

A Borel-Cantelli argument results in

(
n−1

(
bn−1∑
i=1

U2
i +

n∑
i=n−bn+2

U2
i

)
− 2(bn − 1)

n

)2c

→ 0 w.p.1 as n→∞ .

Hence

n−1

∣∣∣∣∣
bn−1∑
i=1

U2
i +

n∑
i=n−bn+2

U2
i

∣∣∣∣∣→ 0 w.p.1 as n→∞

since bn/n→ 0 as n→∞.

2. Notice

n−1

∣∣∣∣∣2B̄n

(
bn−1∑
i=1

Ui +
n∑

i=n−bn+2

Ui

)∣∣∣∣∣ ≤ 2
∣∣B̄n

∣∣n−1

n∑
i=1

|Ui| .

By the classical strong law, n−1
∑n

i=1 |Ui| →
√

2/π w.p.1 since |Ui| are i.i.d.
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half-normal distributions. Combining this with Lemma 15 imply

n−1

∣∣∣∣∣2B̄n

(
bn−1∑
i=1

Ui +
n∑

i=n−bn+2

Ui

)∣∣∣∣∣ ≤ 4/
√
πn−1/2(1 + ε) [log log n]1/2 ,

which tends to 0 as n→∞.

3. Using Lemma 15

n−1
∣∣2(bn − 1)B̄2

n

∣∣ ≤ (1 + ε)24n−2 [log log n] (bn − 1) ,

which tends to 0 since bn/n→ 0 as n→∞.

Next, consider (A.9)

n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

TiTs+i +
n−s∑

i=n−bn+l+1

TiTs+i

)∣∣∣∣∣
= n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

(
Ui − B̄n

) (
Us+i − B̄n

)
+

n−s∑
i=n−bn+l+1

(
Ui − B̄n

) (
Us+i − B̄n

)) ∣∣∣∣∣
≤ n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

UiUs+i +
n−s∑

i=n−bn+l+1

UiUs+i

)∣∣∣∣∣
+ n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

B̄nb
−1
n

(
l−1∑
i=1

(−Ui − Us+i) +
n−s∑

i=n−bn+l+1

(−Ui − Us+i)

)∣∣∣∣∣
+ n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

B̄2
nb

−1
n 2(bn − 1)

∣∣∣∣∣ .
Again, we show that each of the three terms above tend to zero.
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1. Let C(bn) be the (bn − 1)× (bn − 1) matrix with entries,

Ci,j(bn) =

2n−1b−1
n (bn − i) for i > j ,

0 otherwise.

Further let D(bn) be the (bn − 1)× (bn − 1) matrix with entries,

Di,j(bn) =

2n−1b−1
n j for i > j ,

0 otherwise.

Define U := (U1, . . . , Ubn−1, Un−bn+2, . . . , Un)T , then by construction

A(bn) = U ′

 C 0

0 D

U

= n−12
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

UiUs+i +
n−s∑

i=n−bn+l+1

UiUs+i

)
.

Recall U1, . . . , Ubn−1, Un−bn+2, . . . , Un are i.i.d. N(0, 1) resulting in EA(bn) = 0.

Thus, we can apply Lemma 18

E

(n−12
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

UiUs+i +
n−s∑

i=n−bn+l+1

UiUs+i

))2c


≤ K(c)

(∑
j

∑
k

a2
jk

)c

where the coefficients ajk are the elements of the matrix

 C 0

0 D
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and K(c) is a constant in c. Since b−1
n (bn − i) < 1 for all i in C and b−1

n j < 1

for all j in D we have

∑
j

∑
k

a2
jk ≤ n−24

bn−1∑
i=1

bn−1∑
j=1

12 = n−2(bn − 1)2.

Hence,

E

(n−12
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

UiUs+i +
n−s∑

i=n−bn+l+1

UiUs+i

))2c


≤ K(c)

(
bn − 1

n

)2c

.

Then by a Borel-Cantelli argument,

n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

b−1
n

(
l−1∑
i=1

UiUs+i +
n−s∑

i=n−bn+l+1

UiUs+i

)∣∣∣∣∣
tends to 0 as n→∞ since there exists constant c ≥ 1 such that

∑
n(bn/n)c <∞.
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2. Notice

n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

B̄nb
−1
n

(
l−1∑
i=1

(−Ui − Us+i) +
n−s∑

i=n−bn+l+1

(−Ui − Us+i)

)∣∣∣∣∣
≤ n−12

bn−1∑
s=1

bn−s∑
l=1

|B̄n|b−1
n

(
l−1∑
i=1

(|Ui|+ |Us+i|) +
n−s∑

i=n−bn+l+1

(|Ui|+ |Us+i|)

)

≤ n−12
bn−1∑
s=1

bn−s∑
l=1

|B̄n|b−1
n

(
2

bn∑
i=1

|Ui|+ 2
n∑

i=n−bn+1

|Ui|

)

< n−12b2n|B̄n|b−1
n

(
2

bn∑
i=1

|Ui|+ 2
n∑

i=n−bn+1

|Ui|

)

= n−14b2n|B̄n|b−1
n

(
bn∑
i=1

|Ui|+
n∑

i=n−bn+1

|Ui|

)
.

Then from Lemma 15

n−14b2n|B̄n|b−1
n

(
bn∑
i=1

|Ui|+
n∑

i=n−bn+1

|Ui|

)
≤ n−3/24b2n(1 + ε) [2 log log n]1/2K

(A.10)

where K = b−1
n

(∑bn

i=1 |Ui|+
∑n

i=n−bn+1 |Ui|
)
. If K stays bounded w.p.1 then

(A.10) tends to 0 as n→∞ since n−3/2b2n → 0 as n→∞.

Hence, it suffices to show that K stays bounded w.p.1. First notice the classical

strong law of large numbers imples b−1
n

∑bn

i=1 |Ui| stays bounded w.p.1. We will

show b−1
n

∑n
i=n−bn+1 |Ui| stays bounded using the following strong invariance

principle. Komlós et al. (1975), Komlós et al. (1976), and Major (1976) have

shown in the i.i.d. case, that if E[exp |tX1|] < ∞ in a neighborhood of t = 0,

then

Sn − nµ = σB(n) +O(log n) w.p.1

where the log n rate is extremely sharp. We will apply this to the i.i.d. sequence

{|Ui| : i ≥ 1} with a half-normal distribution. (Recall the E|Ui| =
√

2/π and
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Var|Ui| = 1− 2/π.) Then∣∣∣∣∣
n∑

i=1

|Ui| − n
√

2/π − (1− 2/π)B(n)

∣∣∣∣∣ ≤ C ′ log n ,

resulting in

b−1
n

n∑
i=n−bn+1

|Ui| = b−1
n

∣∣∣∣∣
n∑

i=1

|Ui| −
n−bn∑
i=1

|Ui|

∣∣∣∣∣
= b−1

n

∣∣∣∣∣
(

n∑
i=1

|Ui| − n
√

2/π − (1− 2/π)B(n)

)

−

(
n−bn∑
i=1

|Ui| − (n− bn)
√

2/π − (1− 2/π)B(n− bn)

)

+ (1− 2/π) (B(n)−B(n− bn)) + bn
√

2/π

∣∣∣∣∣
≤ b−1

n

(
2C ′ log n+ (1 + ε)

(
2bn

(
log

n

bn
+ log log n

))1/2

+ bn
√

2/π

)
=
√

2/π + 2C ′b−1
n log n+O

(
(b−1

n log n)1/2
)

w.p.1.

Hence, b−1
n

∑n
i=n−bn+1 |Ui| stays bounded w.p.1 since b−1

n log n stays bounded as

n→∞.

3. Using Lemma 15 we have

n−1

∣∣∣∣∣2
bn−1∑
s=1

bn−s∑
l=1

B̄2
nb

−1
n 2(bn − 1)

∣∣∣∣∣ ≤ n−14B̄2
nb

2
n

≤ n−28(1 + ε)2 [log log n] b2n ,

which tends to 0 as n→∞ since bn/n→ 0 as n→∞.
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A.1.3 Results for Batch Means

Recall that B = {B(t), t ≥ 0} denotes a standard Brownian motion. Define

σ̃2
BM =

bn
an − 1

an−1∑
k=0

(B̄k − B̄n)2

where B̄k = b−1(B((k + 1)b)−B(kb)) for k = 0, . . . , an − 1 and B̄n = n−1B(n).

Lemma 22. (Damerdji, 1994, Proposition 3.1) Assume Assumption 2 and there ex-

ists a constant c ≥ 1 such that
∑

n(bn/n)c <∞, then as n→∞, σ̃2
BM → 1 w.p.1.

Proof. Notice that

σ̃2
BM =

bn
an − 1

an−1∑
k=0

(B̄k − B̄n)2

=
an

an − 1

(
1

an

an−1∑
k=0

bnB̄
2
k − bnB̄

2
n

)
.

Using this representation, we will the first term above goes to 1 while the second

terms tends to 0 as n→∞.

1. Properties of Brownian motion imply for all k = 0, . . . , an − 1 that B̄k are i.i.d.

N(0, 1/bn) and hence bnB̄
2
k are i.i.d. χ2

1. Then
∑an−1

k=0 bnB̄
2
k ∼ χ2

an
. Therefore,

by Lemma 20 we have

E

(an−1∑
k=0

bnB̄
2
k − an

)2c
 ≤ K (an)c ,

and

E

( 1

an

an−1∑
k=0

bnB̄
2
k − 1

)2c
 ≤ K

(
bn
n

)c

.
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Then by a Borel-Cantelli argument,

1

an

an−1∑
k=0

bnB̄
2
k → 1 w.p.1 as n→∞ .

2. Similar properties of Brownian motion imply nB̄2
n ∼ χ2

1, hence E
[
bnB̄

2
n

]
= bn/n.

By a Borel-Cantelli argument, if
∑

n(bn/n) < ∞, then bnB̄
2
n → 0 as n → ∞

w.p.1.

More generally, we can use Lemma 20 to show

E
[(
nB̄2

n − 1
)2c
]
≤ K ,

and therefore

E

[(
bnB̄

2
n −

bn
n

)2c
]
≤ K

(
bn
n

)2c

.

Then by a Borel-Cantelli argument, bnB̄
2
n → 0 as n→∞ w.p.1.

A.1.4 Results for Mean Square Consistency

Consider the Brownian motion estimator for OBM,

σ̃2
OBM =

nbn
(n− bn)(n− bn + 1)

n−bn∑
j=0

(B̄j(bn)− B̄n)2 .

Further define, the Brownian motion estimator for BM,

σ̃2
BM =

bn
an − 1

an−1∑
k=0

(B̄k − B̄n)2 ,

where B̄k := b−1
n (B((k + 1)bn)−B(kbn + 1)) for k = 0, . . . , an − 1.
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Lemma 23. (Damerdji, 1995, p. 285 and Lemma 2) Suppose Assumption 2 holds,

then

E
[
σ̃2

OBM

]
= E

[
σ̃2

BM

]
= 1 , (A.11)

n

bn
Var

[
σ̃2

OBM

]
=

4

3
+ o (1) , and (A.12)

n

bn
Var

[
σ̃2

BM

]
= 2 + o (1) . (A.13)

Proof. The proof for σ̃2
BM is straight forward and is therefore omitted.

First, define Ui := B(i)−B(i− 1) as the increments of Brownian motion between

times i and i− 1 and recall that Ui are i.i.d. N(0, 1) for all i = 1, . . . , n. Notice that

B̄j(bn)− B̄n can be written as a linear combination of i.i.d. normal distributions for

all j = 1, . . . , n− b+ 1,

B̄j(bn)− B̄n =
(n− b)

nb

j+b∑
i=j

Ui −
1

n

j−1∑
i=1

Ui −
1

n

n∑
i=j+b+1

Ui ,

where any empty sums are defined to be zero.

Then it is easy to see the E[B̄j(bn)− B̄n] = 0 for all j = 1, . . . , n− b+ 1 and

Var
[
B̄j(bn)− B̄n

]
= Var

[
(n− b)

nb

j+b∑
i=j

Ui −
1

n

j−1∑
i=1

Ui −
1

n

n∑
i=j+b+1

Ui

]

=

(
n− b

nb

)2

b+
n− b

n2

=
n− b

bn
(A.14)

for all j = 1, . . . , n− b+ 1.
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Now we can calculate E [σ̃2
OBM ]

E
[
σ̃2

OBM

]
= E

[
nb

(n− b)(n− b+ 1)

n−b+1∑
j=1

(B̄j(bn)− B̄n)2

]

=
nb

(n− b)(n− b+ 1)

n−b+1∑
j=1

E
[
(B̄j(bn)− B̄n)2

]
=

nb

(n− b)(n− b+ 1)

n−b+1∑
j=1

n− b

bn

= 1 . (A.15)

Calculating Var [σ̃2
OBM ] will require first calculating E [σ̃4

OBM ]. First notice that,

σ̃4
OBM =

n2b2

(n− b)2(n− b+ 1)2

[
n−b+1∑

j=1

(B̄j(bn)− B̄n)2

]2

=
n2b2

(n− b)2(n− b+ 1)2

[
n−b+1∑

j=1

(B̄j(bn)− B̄n)4 (A.16)

+ 2
b−1∑
s=1

n−b+1−s∑
j=1

(B̄j(bn)− B̄n)2(B̄j+s(bn)− B̄n)2 (A.17)

+2
n−b∑
s=b

n−b+1−s∑
j=1

(B̄j(bn)− B̄n)2(B̄j+s(bn)− B̄n)2

]
. (A.18)

Then we can let A be the summation in (A.16), B be the double summation in (A.17),

and C be the double summation in (A.18). We will calculate the expectation of these

separately. First recall that B̄j(bn) − B̄n ∼ N(0, (n − b)/bn) from (A.14), then it’s
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easy to see

EA =
n−b+1∑

j=1

E
[
(B̄j(bn)− B̄n)4

]
=

n−b+1∑
j=1

3

(
n− b

bn

)2

= 3(n− b+ 1)

(
n− b

bn

)2

. (A.19)

We will calculate EB by first calculating

E
[
(B̄j(bn)− B̄n)2(B̄j+s(bn)− B̄n)2

]
= E

[
Z2

1Z
2
2

]
where Z1 := (B̄j(bn)− B̄n) and Z2 := (B̄j+s(bn)− B̄n) for all j = 1, . . . , n− b+ 1− s

and s = 1, . . . , b − 1. Notice that both Z1 and Z2 are linear combinations of i.i.d.

standard normal random variables. We will calculate the joint normal distribution of

Z := (Z1, Z2)
T . Recall that U := (U1, . . . , Un)T , then

U ∼ N (0, In) ,

and if D is a m× n matrix, then the random vector Z = DU is jointly normal with

Z ∼ N
(
0, DDT

)
.

Then we can calculate the distribution of Z as Z1

Z2

 ∼ N

 0

0

 ,Σ

 ,
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where

Σ =

 n−b
bn

(b− s)
(

n−b
nb

)2 − 2s
n

(
n−b
nb

)
+ n−b−s

n2

(b− s)
(

n−b
nb

)2 − 2s
n

(
n−b
nb

)
+ n−b−s

n2
n−b
bn


=

 n−b
bn

nb−ns−b2

nb2

nb−ns−b2

nb2
n−b
bn

 .

To calculate the desired expectation, we will iterate the expectation. To this end, we

will need to calculate the conditional distribution of Z1|Z2 and the marginal distri-

bution of Z2. Recall that if X1

X2

 ∼ N

 µ1

µ2

 ,

 Σ11 Σ12

Σ21 Σ22

 ,

and Σ22 is non-singular, then the conditional distribution of X1|X2 is

X1|X2 ∼ N
(
µ1 + Σ12Σ

−1
22 (X2 − µ2) ,Σ11 − Σ12Σ

−1
22 Σ21

)
.

In our case, n−b
bn

is clearly non-singular since b < n, and we can calculate the condi-

tional distribution of Z1|Z2 and the marginal distribution of Z2 as

Z1|Z2 ∼ N

(
b(n− b)− ns

b(n− b)
Z2,

2bs(n− b)− ns2

b3(n− b)

)
Z2 ∼ N

(
0,
n− b

bn

)
.
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Now we can calculate the desired expectation using an iterated expectation as follows

E
[
Z2

1Z
2
2

]
= EZ2

[
EZ1|Z2

[
Z2

1Z
2
2 | Z2

]]
= EZ2

[
Z2

2EZ1|Z2

[
Z2

1 | Z2

]]
= EZ2

[
Z2

2

((
b(n− b)− ns

b(n− b)
Z2

)2

+
2bs(n− b)− ns2

b3(n− b)

)]

=

(
b(n− b)− ns

b(n− b)

)2

EZ2

[
Z4

2

]
+

2bs(n− b)− ns2

b3(n− b)
EZ2

[
Z2

2

]
=

(
b(n− b)− ns

b(n− b)

)2

3

(
n− b

bn

)2

+
2bs(n− b)− ns2

b3(n− b)

(
n− b

bn

)
=

3(b(n− b)− ns)2

b4n2
+

2bs(n− b)− ns2

b4n

=
3(b(n− b)− ns)2 + 2nbs(n− b)− n2s2

b4n2
.
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Next, we can calculate

EB = E

[
b−1∑
s=1

n−b+1−s∑
j=1

(B̄j(bn)− B̄n)2(B̄j+s(bn)− B̄n)2

]

=
b−1∑
s=1

n−b+1−s∑
j=1

E
[
(B̄j(bn)− B̄n)2(B̄j+s(bn)− B̄n)2

]
=

b−1∑
s=1

n−b+1−s∑
j=1

E
[
Z2

1Z
2
2

]
=

b−1∑
s=1

n−b+1−s∑
j=1

[
3(b(n− b)− ns)2 + 2nbs(n− b)− n2s2

b4n2

]

=
b−1∑
s=1

(n− b+ 1− s)

[
3(b(n− b)− ns)2 + 2nbs(n− b)− n2s2

b4n2

]

=
1

b4n2

b−1∑
s=1

(n− b+ 1− s)
[
3b2(n− b)2 − 4nbs(n− b) + 2n2s2

]
=

1

b4n2

[
3b2(n− b)2(n− b+ 1)(b− 1)− 4nb(n− b)(n− b+ 1)

b−1∑
s=1

s

+ 2n2(n− b+ 1)
b−1∑
s=1

s2 − 3b2(n− b)2

b−1∑
s=1

s

+ 4nb(n− b)
b−1∑
s=1

s2 − 2n2

b−1∑
s=1

s3

]
.

Then by mathematical fact

b−1∑
s=1

s =
(b− 1)b

2
,

b−1∑
s=1

s2 =
(b− 1)b(2b− 1)

6
, and

b−1∑
s=1

s3 =
(b− 1)2b2

4
.
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Resulting in

EB =
1

b4n2

[
3b2(n− b)2(n− b+ 1)(b− 1)− 4nb(n− b)(n− b+ 1)

b−1∑
s=1

s

+ 2n2(n− b+ 1)
b−1∑
s=1

s2 − 3b2(n− b)2

b−1∑
s=1

s

+ 4nb(n− b)
b−1∑
s=1

s2 − 2n2

b−1∑
s=1

s3

]

=
1

b4n2

[
3b2(n− b)2(n− b+ 1)(b− 1)− 4nb(n− b)(n− b+ 1)

(b− 1)b

2

+ 2n2(n− b+ 1)
(b− 1)b(2b− 1)

6
− 3b2(n− b)2 (b− 1)b

2

+ 4nb(n− b)
(b− 1)b(2b− 1)

6
− 2n2 (b− 1)2b2

4

]
=

1

6b3n2

[
18b(n− b)2(n− b+ 1)(b− 1)− 12nb(n− b)(n− b+ 1)(b− 1)

+ 2n2(n− b+ 1)(b− 1)(2b− 1)− 9b2(n− b)2(b− 1)

+ 4nb(n− b)(b− 1)(2b− 1)− 3n2b(b− 1)2
]
.

Now we are going to rearrange terms from 2 parts of the above expression

2n2(n− b+ 1)(b− 1)(2b− 1)− 3n2b(b− 1)2

= 2n3(b− 1)(2b− 1)− 2n2(b− 1)2(2b− 1)− 3n2b(b− 1)2

= 2n3(b− 1)(2b− 1)− n2(b− 1)2(7b− 2) .
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We will also rearrange the 4 remaining terms,

18b(n− b)2(n− b + 1)(b− 1)− 12nb(n− b)(n− b + 1)(b− 1)

− 9b2(n− b)2(b− 1) + 4nb(n− b)(b− 1)(2b− 1)

= 18b(n− b)(n− b + 1)2(b− 1)− 18b(n− b)(n− b + 1)(b− 1)

− 12b(n− b)(n− b + 1)2(b− 1)− 12b(n− b)(n− b + 1)(b− 1)2

− 9b2(n− b)2(b− 1) + 4nb(n− b)(b− 1)(2b− 1)

= 6b(n− b)(n− b + 1)2(b− 1)− 18b(n− b)(n− b + 1)(b− 1)

− 12b(n− b)(n− b + 1)(b− 1)2

− 9b2(n− b)2(b− 1) + 4nb(n− b)(b− 1)(2b− 1)

= 6b(n− b)(n− b + 1)2(b− 1)− 18b(n− b)(n− b + 1)(b− 1)

− 12b2(n− b)(n− b + 1)(b− 1) + 12b(n− b)(n− b + 1)(b− 1)

− 9b2(n− b)(n− b + 1)(b− 1) + 9b2(n− b)(b− 1)

+ 8b2(n− b)(n− b + 1)(b− 1) + 8b2(n− b)(b− 1)2 − 4nb(n− b)(b− 1)

= 6b(n− b)(n− b + 1)2(b− 1)− 13b2(n− b)(n− b + 1)(b− 1)

+ 9b2(n− b)(b− 1) + 8b2(n− b)(b− 1)2

− 4nb(n− b)(b− 1)− 6b(n− b)(n− b + 1)(b− 1)

= 6b(n− b)(n− b + 1)2(b− 1)− 13b2(n− b)(n− b + 1)(b− 1)

+ 9b2(n− b)(b− 1) + 8b2(n− b)(b− 1)2

− 4b(n− b)2(b− 1)− 4b2(n− b)(b− 1)

− 6b(n− b)2(b− 1)− 6b(n− b)(b− 1)

= 6b(n− b)(n− b + 1)2(b− 1)− 13b2(n− b)(n− b + 1)(b− 1)

− 10b(n− b)2(b− 1) + b(n− b)(b− 1) [9b + 8b(b− 1)− 4b− 6]

= 6b(n− b)(n− b + 1)2(b− 1)− 13b2(n− b)(n− b + 1)(b− 1)

− 10b(n− b)2(b− 1) + b(n− b)(b− 1)
[
8b2 − 3b− 6

]
.
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Then we can present the result as in Damerdji (1995),

EB =
1

6b3n2

[
18b(n− b)2(n− b+ 1)(b− 1)− 12nb(n− b)(n− b+ 1)(b− 1)

+ 2n2(n− b+ 1)(b− 1)(2b− 1)− 9b2(n− b)2(b− 1)

+ 4nb(n− b)(b− 1)(2b− 1)− 3n2b(b− 1)2
]

=
1

6b3n2

[
6b(n− b)(n− b+ 1)2(b− 1)− 13b2(n− b)(n− b+ 1)(b− 1)

− 10b(n− b)2(b− 1) + b(n− b)(b− 1)
[
8b2 − 3b− 6

]
+2n3(b− 1)(2b− 1)− n2(b− 1)2(7b− 2)

]
. (A.20)

Similar to the previous expectation, we will calculate the EC by first calculating

E
[
(B̄j(bn)− B̄n)2(B̄j+s(bn)− B̄n)2

]
= E

[
Z2

1Z
2
2

]
where Z1 = (B̄j(bn)−B̄n) and Z2 = (B̄j+s(bn)−B̄n) for all j = 1, . . . , n−b+1−s and

s = b, . . . , n−b. Notice that both Z1 and Z2 are linear combinations of i.i.d. standard

normal random variables. We can again calculate the joint normal distribution of Z1

and Z − 2 as  Z1

Z2

 ∼ N

 0

0

 ,

 n−b
bn

− 1
n

− 1
n

n−b
bn

 ,

resulting in the conditional distribution of Z1|Z2 and the marginal distribution of Z2

as

Z1|Z2 ∼ N

(
−b
n− b

Z2,

[
n− b

bn
− bn

n2(n− b)

])
Z2 ∼ N

(
0,
n− b

bn

)
.
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Then we can calculate the desired expectation using an iterated expectation as follows

E
[
Z2

1Z
2
2

]
= EZ2

[
EZ1|Z2

[
Z2

1Z
2
2 | Z2

]]
= EZ2
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Finally, we can calculate the EC,
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We can further factor the second part into a more desireable form

[
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2
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Then we can plug in the above result to get
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Combining the results from (A.19), (A.20), and (A.21), we get
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and so
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. (A.22)

The “little-o” notation can be alternatively written as for all ε > 0, there exists a

n0(ε) such that ∣∣∣∣E [σ̃4
OBM

]
− 1− 4b

3n

∣∣∣∣ < ε

∣∣∣∣ bn
∣∣∣∣ ,

for all n > n0(ε).
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Finally, we can calculate Var [σ̃2
OBM ] from (A.15) and (A.22)
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