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Abstract

This paper examines the predictive content of coincident variables for monitoring
U.S. recessions in the presence of instabilities. We propose several speci�cations of
a probit model for classifying phases of the business cycle. We �nd strong evidence
in favor of the ones that allow for the possibility that the economy has experienced
recurrent breaks. The recession probabilities of these models provide a clearer
classi�cation of the business cycle into expansion and recession periods, and superior
performance in the ability to correctly call recessions and to avoid false recession
signals. Overall, the sensitivity, speci�city, and accuracy of these models are far
superior as well as their ability to timely signal recessions. The results indicate the
importance of considering recurrent breaks for monitoring business cycles.
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1. Introduction

Since the seminal work of Burns and Mitchell (1946), a traditional method of monitoring
the economy is through the use of coincident indicators. Burns and Mitchell classi�ed
hundred of macroeconomic variables into lagging, coincident, or leading according to
the timing of their cyclical movements with the U.S. economic activity, in a research
sponsored by the National Bureau of Economic Research (NBER). The same main coin-
cident variables found in this study are still currently being used to date turning points
of business cycles by the NBER Business Cycle Dating Committee, which is generally
considered authoritative in dating recessions. These indicators are some of the most
watched series by the press, businesses, policymakers, and stock market participants.

The reliability of predictions using these coincident variables in stationary models
may have been compromised by the possibility of occurrence of structural breaks in the
functioning of the economy in the last few decades. Several authors have found that
the U.S. business cycle has experienced a substantial decline in its amplitude since the
mid-1980s (e.g. McConnell and Perez-Quiros 2000, Koop and Potter 2000, Chauvet and
Potter 2001, Van Dijk and Sensier 2004, among several others). An increased stability
of business cycle �uctuations has important implications since it a¤ects the frequency,
duration, and probabilities of future recessions and expansions.

This paper examines the predictive content of coincident variables for monitoring
U.S. recessions using several speci�cations of the probit model. First, we expand on pre-
vious research by considering probit speci�cations with �xed or endogenous breakpoints.
In contrast with the research that investigates structural breaks in macroeconomic vari-
ables per se, we are interested in examining the stability of the relationship among the
coincident variables and the business cycle. We �nd strong evidence of structural insta-
bility. Although the speci�cation considered only a single endogenous break, there was
substantial uncertainty about its location, spanning over �ve years. This is an impor-
tant �nding, given that the estimated probability of recessions is a¤ected by both the
presence as well as the location of the break.

Stabilization of the business cycle is not a new �nding. The long expansion in the
1960s also spurred debates about economic stabilization. This is summarized in Arthur
Burns�(1960) statement describing the stabilization of the U.S. economy since World
War II:

�There is no parallel for this sequence of mild - or such a sequence of brief
- contractions, at least during the past hundred years in our own country.�

Burns�statement refers to the decrease in volatility (�mildness�) of the U.S. business
cycle and to changes in the duration (�briefness�) of business cycle phases after the
War. A large literature followed studying these questions. The consensual evidence
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was that an increased stabilization occurred in the U.S. economy comparing the periods
before and after the War, but the magnitude of this stability was the subject of intense
debates. Now, forty years later, economists are revisiting the evidence about the post-
War business cycle stabilization - this time motivated by the �nding of a structural break
in the volatility of the U.S. output growth in the �rst quarter of 1984. Chauvet and
Popli (2008) investigate whether this recent change is unique to the U.S. and particular
to the 1980s or if it is part of a long run trend in volatility shared by several countries.
They �nd strong evidence of multiple structural breaks leading to more stability in these
countries over time, and that the recent decrease in U.S. output volatility is part of a
broader long-term trend shared by all countries studied.

Based on these �ndings and on the large uncertainty regarding the location of the
break in the probit speci�cation studied, we propose an extension of the model that
accounts for the potential existence of multiple shifts. We use business cycle troughs to
date the breakpoints. Thus, assuming that business cycles are recurrent �uctuations,
this is a model of recurrent breaks. We restrict the form of the break to be a change in
the innovation variance implicit in the probit model. Most work using probit models in
di¤erent applications assume stability and independent errors. We further extend the
probit speci�cation to allow for the possibility of serially correlated errors, introducing
an autoregressive process for the latent variable. The models proposed are estimated
using Bayesian methods and can be applied to di¤erent questions in a variety of �elds
that involve statistical surveillance, change point detection, tracking signals, among
several others.

We �nd that the best �tting speci�cation in terms of Bayes factor allows for recurrent
breaks in the innovation variance as well as an autoregressive component. Analysis of the
estimated probability of recessions shows that allowing for parameter changes increases
substantially the signal to noise ratio. In particular, the recession probabilities for these
models provide a clearer classi�cation of the business cycle into expansion and recession
periods and superior performance in the ability to correctly call recessions and to avoid
false recession signals in-sample. Overall, the sensitivity, speci�city, and accuracy (i.e.,
mean squared errors) of these models are far superior than for the models with a single
break or with no break. On the other hand, the standard probit model with no break is
the one with the lowest predictive ability. Finally, regarding the ability to timely signal
recession, the model that considers multiple shifts in the innovation variances displays
the best overall performance. These results indicate the importance of considering
recurrent breaks for improving the monitoring of business cycles.

The issue studied is quite topical as there is currently a lot of speculation on whether
the economy has recently entered into a recession. Most of the models considered
indicate weaker economic activity in the end of the available sample of October 2007.1

1This paper was written in December 2007.
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However, the value of the probability of a recession di¤ers across speci�cations with
weaker signals arising from the models with multiple shifts in the innovation variance.2

On the other hand, the higher probability of recession from the probit model that
considers no break or a single break re�ects the uncertainty regarding the current state
of the economy, and the importance of models with improved prediction ability. The
prediction from the model with recurrent breaks is more in accord with the judgement
that the economy was not in a recession in the end of 2007 by Martin Feldstein (2007),
one of the members of the NBER dating Business Cycle Dating Committee.3

The paper is organized as follows. Section two introduces the probit model and
discusses our various extensions. The third section describes the Gibbs sampler. In the
fourth section the empirical results from the alternative speci�cations are presented.
The �fth section concludes.

2. The Models

2.1. Standard Probit Model

The standard probit model assumes an unobservable variable Y �t with a corresponding
binary indicator Yt for whether Y �t is positive or negative:

Yt =

�
0 if Y �t < 0
1 if Y �t � 0

: (2.1)

In our context, Y �t represents the state of the economy as measured by the NBER
recession dating: Yt takes the value 0 if the observation is an expansion or 1 if it is
a recession. The latent variable Y �t is related to the regressors Xit according to the
equation:

Y �t = �0 + �
0Xt + "t "tjXt � i:i:d:N(0; 1) (2.2)

2The models are devised to monitor current economic conditions as they only use coincident (not
leading) variables. Thus, the models do not have information on future probabilities of a recession from
November 2007 on.

3Martin Feldstein (December 16, 2007):

�Because monthly data for December won�t be available until next year, we cannot be
sure whether the economy has turned down. The measure of personal income for October
suggests that the economy may have peaked and begun to decline, but the data for em-
ployment and industrial production in November and for sales in October show continued
growth. My judgment is that when we look back at December with the data released in
2008 we will conclude that the economy is not in recession now.�

4



where Xt = fXit: i = Prod, Sales, Inc, and Empg are the coincident macroeconomic
variables industrial production, sales, personal income, and employment, and � = f�i : i
= Prod, Sales, Inc, and Empg are regression coe¢ cients. The model assumes that:

P (Y �t � 0jXt;�) = �[�0 + �Xt]; (2.3)

where � is the cumulative distribution function of the standard normal distribution,
� = [�0; �];and P (Y

�
t � 0jXt;�) is the conditional probability of a recession. This

standard model can be interpreted as capturing the behavior of the business cycle dating
committee in an economy with no changes.

2.2. Extensions of the Probit Model

We extend the standard probit model in three ways. First, we allow for the presence of
a �xed or endogenous breakpoint. Second, we allow the variance of the innovation to
change with the business cycle, which accounts for recurrent breaks in the innovation
variance. Finally, we allow for the possibility of serially correlated error by adding an
autoregressive component to the model. These alternative speci�cations imply very
di¤erent predictive ability, as discussed in section 4. All models are estimated using
Bayesian methods.

2.2.1. Probit Model with a Breakpoint

In order to allow for structural breaks, the unobserved Y �t is modeled as a Gaussian
process with constant unit innovation variance and conditional mean:

E(Y �t ) = �(�)
0Zt(�); (2.4)

where � represents a break point and Zt(�) is the 10� 1 vector:

Zt(�) = [1(�1); 1(�2); 1(�1)Xit; 1(�2)Xit]
0;

For �1 2 ft : 1 � t � �g and for �2 2 ft : � < t � Tg: Let the collection of parameter
vectors f�(�) 2 [�1; �2]g be de�ned by:

[�0(�1); �0(�2); �(�1); �(�2)]
0:

The date � can be �xed or be endogenously estimated as explained in the next section.
The use of Bayesian methods allows us to capture the joint uncertainty over the timing
of the breakpoint and the parameter estimates.
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2.2.2. Probit Model with Recurrent Breakpoints

If Y �t is multiplied by any positive constant, the indicator variable Yt is not changed,
which implies that the coe¢ cients f�0; �g can be estimated only up to a positive mul-
tiple. Thus, the standard probit model assumes that the variance of the errors is equal
to one to �x the scale of Y �t . We consider a more general speci�cation in which the
variance of the innovation may change:

Y �t = �0 + �
0Xt + �(t)"t; (2.5)

and the initial business cycle is partially observed starting at t = 1 (t1 = 0):We restrict
this speci�cation by assuming that the innovation variance is the same within each
business cycle.

We assume that a business cycle starts the month after a NBER trough and continues
up to the month of the next NBER trough. If tn�1 corresponds to the beginning of
business cycle n� 1; then the dates of business cycle n are t 2 ftn�1+1; : : : ; tn� 1; tng:
Let the periods in which the economy is in an expansion or recession of business cycle n
be denoted by the sets En and Rn, respectively. Hence, business cycle expansions and
recessions are classi�ed by E = [En and R = [Rn, respectively.where

�n = �(t) if tn�1 < t � tn; n = 1; : : : N;

Since the scale of the innovation and the coe¢ cient parameters cannot be separately
identi�ed, this can be interpreted as a restricted time-varying parameter speci�cation,
in which the innovation variance is normalized to 1 across all business cycles, but each
cycle has a unique intercept �n0 = �0=�n and slope coe¢ cients �ni = �i=�n: Another
interpretation of the model is that the scale of shocks themselves may change across
business cycles. This allows for the possibility that the size of the innovation variance
may change depending on the duration of the business cycle. More importantly, since it
allows for potential recurrent breakpoints across business cycles, it can capture long run
trends on the variance such as whether it has been decreasing over time. For example,
suppose that the change in the scale of the shocks is common across the business cycle
variables in Xt and is the same as the change in scale to the innovation to the latent
variable. In this case our approach could alternatively be interpreted as keeping constant
the scale of the business cycle variables to maintain the same relationship to business
cycle phases. Thus, in this model we assume that:

P (Y �t � 0jXt;�) = �n[(�0 + �0Xt] = �[(�0 + �0Xt)=�n]: (2.6)

We assume in the estimation below that �n are a priori independent across business
cycles, as in Chauvet and Potter (2005). 4

4An interesting extension is proposed in Koop and Potter (2007), who allow for dependence across
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2.2.3. Probit Model with Multiple Breakpoints and Dependence in the La-
tent Variable

We further extend the probit model to allow for the possibility that the latent variable
Y �t follows a �rst order autoregressive process:

Y �t = �0 + �
0Xt + �Y

�
t�1 + �(t)"t; (2.7)

where the autoregressive parameter j�j < 1. The intention here is to capture dependence
in the business cycle phases that comes from the concept that recessions and expansions
should have a certain duration. In our previous work on recession forecasting we have
found that allowing for dependence can eliminate a number of false positives.

2.2.4. Likelihood Function

The likelihood function for the most general model that consider recurrent breakpoints
in the variances, a single breakpoint in the conditional mean, and autoregressive process
for the latent variable is:

`(Y T jXT
i ;�; f�ng ; �; y0) (2.8)

=

NY
n=1

f
Y
t2Rn

�n[�(�)
0Zt(�) + �Y

�
t�1]

Y
t2En

(1� �n[�(�)0Zt(�) + �Y �t�1])g:

All of the other models considered are nested within this likelihood function with ap-
propriate parameter restrictions.

2.2.5. Models Estimated

We estimate �ve di¤erent speci�cations:5

1. Model 1: Standard probit with no break;

2. Model 2: Probit model with a �xed break in 1984:01;

3. Model 3: Probit model with an endogenous break;

4. Model 4: Probit model with recurrent breaks - business cycle speci�c variance;

5. Model 5: Probit model with recurrent breaks and autoregressive latent process.

business cycles. One could also consider the unrestricted model with time variation each month, as
suggested by the editor. We are implementing this in an on-going extension of our framework by
allowing for stochastic volatility in the innovation variance with the initial value always set to unity.

5We opted not to estimate an model with an endogenous break in the conditional mean and multiple
breaks with an autoregressive latent process because of the computational di¢ culties we encountered
with Model 3.
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3. Estimation Method

We use Bayesian methods to evaluate the posterior properties of the probit speci�ca-
tions. The Bayesian techniques used have several advantages: the Gibbs sampler can be
used to simulate the latent variable, which simpli�es considerably the computation of
the likelihood function and of Bayes factors used to compare the various models. This
can be implemented using the Savage-Dickey Density ratio within the Gibbs sampler;
the distributions over the probability predictions contain information on uncertainty
regarding parameters, existence or location of breakpoints, and over the most recent
value of the latent variable. Latent variables determine the existence and location of
the break. Conditional on the latent variable the model parameters are generated, while
conditional on the parameters, the latent variable is generated. These simulations are
repeated until an adequate sample is obtained from the posterior distributions.

3.1. Models with a Single Breakpoint

For model 3, we assume that the prior on �(�) is identical and independent across
di¤erent breakpoints. Since we need a non-di¤use prior in order to calculate the marginal
likelihood, we assume that the prior distributions of �(�) are normal with mean f�g
and variance D: The prior distribution � on � is assumed to be discrete uniform over
support [t1; t2]:

The Gibbs sampler procedure generates draws of the latent Y �t conditional on a draw
of f�(�); �g: The sampler is:

1. Draw Y �t < 0 by adding a draw from the truncated normal on (�1;�Zt(�)0�(�))
to Zt(�)0�(�) if t is an expansion period.

2. Draw Y �t � 0 by adding a draw from the truncated normal on (�Zt(�)0�(�);1)
to Zt(�)0�(�) if t is a recession period.

Given this sequence of draws for Y �t we can then construct the marginal likelihood for
each possible breakpoint. De�ning Y� = [Y �1 ; : : : ; Y

�
T ]
0 and Z(�) = [Z1(�)0; : : : ; ZT (�)0]

we have:

f(Y�j�) =

"
det(D

�1
(�))

det(D�1)

#�0:5
� exp

�
�0:5(�s2 + (�(�)� b�(�))Z(�)0Z(�)(�(�)� b�(�))0

+(�(�)� �)D�1(�(�)� �)0
�
;

where �s2 = (Y� � Z(�)b�(�))0(Y� � Z(�)b�(�)) is the sum of the squared errors,
D(�) =

�
D�1 + Z(�)0Z(�)

��1
is the posterior variance, �(�) = D(�)

�
D�1� + Z(�)0Y��
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is the posterior mean, and b�(�) = [Z(�)0Z(�)]�1 Z(�)0Y� is the ordinary least squares
estimator.

We �nd the marginal likelihood for each potential breakpoint � , and then draw a
new value of � from the probability mass function:

f(� jY�)Pt2
�=t1

f(� jY�)
:

Given the draw of � ; we draw �(�) from the normal distribution with mean �(�) and
variance D(�):

3.2. Models with Recurrent Breakpoints

The model with an autoregressive process requires multiple integration over the unob-
served lagged variable. We use the Gibbs sampler to evaluate the likelihood function as
described below.6

3.2.1. Obtaining Draws of the Latent Variable

The Gibbs sampler starts by generating draws of the latent Y �t conditional on (�0; �; f�ng; �)
and the observed coincident variables. Let X 0

t� = �0+ �
0Xt: If � = 0, then the sampler

would have the following simple form:

1. Draw "t from the truncated normal on (�1;�X 0
t�=�n) if t is an expansion period

of business cycle n .

2. Draw "t from the truncated normal on [�X 0
t�=�n;1) if t is a recession period of

business cycle n.

The lagged value of the latent variable in the conditional mean makes the sampler
more complex. Consider �rst generating the last value in the observed sample, Y �T . If
we could condition on a value for Y �T�1, then we could use the steps above by rede�ning
X 0
T� = �0 + �

0XiT + �Y
�
T�1: This would generate a draw of the last period value

of the latent variable. With this �new� value of Y �T and the �old� value of Y �T�2, we
can use the a priori joint normality of the underlying latent variable model to form a
conditional normal distribution for Y �T�1: The exact form of this distribution depends
on an assumption about the initial value Y �0 :We simplify the analysis by assuming that

6Geweke (1999) and Chib (2001) are seminal work on modern Bayesian computational techniques.
These papers, their reference to earlier work, as well as Dueker (1999, 2001) are closely related to the
techniques we use to estimate the models here and in Chauvet and Potter (2002, 2005).
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Y �0 = �0+�
0Xi0 = 0: Then, as shown in the appendix, we have a priori the conditional

normal distribution with mean:7

eXT�1 + � " V (eYT�1)
V (eYT�2)

#"
V (eYT ) �2V (eYT�2)

�2V (eYT�2) V (eYT�2)
#�1 "

Y �T � eXT
Y �T�2 � eXT�2

#
;

and variance:

V (eYT�1)� �2 " V (eYT�1)
V (eYT�2)

#"
V (eYT ) �2V (eYT�2)

�2V (eYT�2) V (eYT�2)
#�1 "

V (eYT�1)
V (eYT�2)

#0
;

where

V (eYt) = t�1X
s=0

�2s�2(t� s)

and eXt = t�1X
s=0

�sX 0
t�s�:

Hence, we draw from the appropriate truncated normal above to obtain a new draw
of Y �T�1: This procedure is repeated until we get to the initial observation period. The
value of Y �1 is drawn in a similar manner to Y

�
T , by conditioning on the new draw of Y

�
2 .

However, this value has a di¤erent form, since its mean is given by:

X 0
1� +

��2(1)

�2(1) + �2�2(2)

�
Y �2 � eX 0

2

�
;

and variance by:

�2(1)� �2�4(1)

�2(1) + �2�2(2)
:

3.2.2. Obtaining Draws of the Model Parameters

Once obtained the sequence of draws for fY �t g, we can then generate draws of the
parameters (�; f�ng; �). We use as priors the normal and gamma distributions, which
generate simple conditional distributions for the posterior. We assume that the parame-
ters of the conditional mean � are a priori bivariate normal with mean vector �(�) and
variance matrix V (�): In addition, the autoregressive parameter � is assumed to have
an a priori truncated normal on (�1; 1) with mean �(�) and variance V (�) independent

7Dueker (1999) derives this conditional distribution using an alternative representation. Our choice
of this representation is based on the fact that it shows directly the dependence on the history of the
coincident variables and the business cycle speci�c variances.
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of �: Finally the N � 1 variance parameters are assumed to be a priori independent
with identical inverted gamma distributions.

For a draw of �, de�ne the time series W �
t = (Y �t � �Y �t�1): Then, conditional on

(fY �t g; f�ng; �); the parameters � are obtained from a normal distribution with variance
matrix:

V (�) =

"
V (�)�1 +

TX
t=1

XtX
0
t=�

2(t)

#�1
;

and mean vector:

�(�) = V (�)

"
V (�)�1�(�) +

TX
t=1

XtW
�
t =�

2(t)

#
:

For a draw of �; de�ne the time series W �
t = (Y �t � X 0

t�): Then, conditional on
(fY �t g; f�ng;�) a potential draw for � is from a normal distribution with variance:

V (�) =

"
V (�)�1 +

TX
t=1

Y �2t�1=�
2(t)

#�1
;

and mean:

�(�) = V (�)

"
V (�)�1�(�) +

TX
t=1

Y �t�1W
�
t =�

2(t)

#
:

We keep generating draws until the stationary condition is satis�ed.
For draws of f�ng; we assume that the prior distributions are independent inverted

gammas with identical degrees of freedom � and scale �s2: Hence, the prior mean is
�s2=(� � 2): The prior parameters are then updated for the business cycle n � 2 by:

�n = � + tn � tn�1

�s2n = �s2 +

tnX
t=tn�1+1

(Y �t �X 0
t� � �Y �t�1)2:

3.3. Evaluating Di¤erent Models

As discussed above we can calculate Bayes factor for the di¤erent models by the Savage
Dickey Density Ratio since the likelihood functions are nested (see Koop and Potter
1999).8 The Bayes factor gives information on how well each model �ts over the ob-
served sample. Its advantages over the likelihood ratio lie on how it deals with nuisance

8An earlier version of the paper contained details on the calculations of Bayes Factors for these
models.
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parameters and averages over possible parameter values. These advantages are espe-
cially important in assessing whether to choose a model with breaks over one without,
although for the purposes of monitoring a particular phase of the business cycle it is
perhaps more important to consider measures of predictive performance. This latter
point is particularly relevant for model 2, for which the evidence collected by the Bayes
factor before 1984 is irrelevant to any current prediction or monitoring problem.

4. Empirical Results

We consider �ve speci�cations of the probit model as described in section 2.2.5. First,
we estimate the probit models under the assumption of no structural breaks using both
maximum likelihood methods and the Gibbs sampler. We then start the sampler from
the maximum likelihood estimator. For the Gibbs sampler we use 100; 000 iterations, but
calculate the posterior properties only after 10; 000 draws (i.e., we use 90; 000 iterations
to estimate the probit models). Next, we �x a breakpoint in the conditional mean of
the probit model in January 1984, based on the evidence of increased stability in the
U.S. economy from this date onwards, as documented by several authors. Third, we
consider estimating the breakpoint endogenously. Fourth, we allow for the possibility
of recurrent breaks in the variance of the model across business cycles. Finally, we
consider a version of the probit model with changing variance and autocorrelated latent
variable.9

4.1. Priors

Although the in�uence of the prior is very minor given the sample size, we give to the
standard probit model 1 the advantage of a prior centered at its maximum likelihood
estimator. For all models we assume that the prior variance of � is the identity matrix
(�(�) for models 2 and 3) and the prior mean is the maximum likelihood estimate from
the benchmark model 1, which assumes unit varince, no breaks, and no autoregressive
component. This choice has no e¤ect on the results (as we have almost 600 observations).
In addition, it simpli�es the calculation of the Bayes factors and is preferable to a
prior that centered � at zero, which would imply no knowledge that we are using
business cycle variables. It also implicitly favors the simplest model as its prior is aligned
with the maximum likelihood estimates. With respect to the prior for � , all possible
datapoints could be used since we are assuming informative priors. However, we decided
to keep a minimum of 10% of the data in each regime, eliminating a proportion of the
endpoints. Notice that this sample still allows for the possibility of a break after the
last business cycle trough of November 2001. It is important to note that by imposing a

9The computation time for the endogenous break model 3 is around 10 hours, whereas it takes only
2 hours for the most complicated model 5.
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breakpoint in Model 2 we are e¤ectively estimating it using two di¤erent samples. This
provides a benchmark for the endogenous approach proposed. We could have made as
the breakpoint the start of the 1980s expansion, but we decided to use the standard
�nding in the literature of a break in early 1984. Finally, the prior for the autoregressive
parameter � is assumed to be a truncated standard normal on (�1; 1), and the prior
for the business cycle speci�c variances in models 4 and 5 is centered at 1 with di¤use
degrees of freedom equal to 3.

4.2. Data

Based on the seminal work of Burns and Mitchell (1946), the NBER Business Cycle
Dating Committee considers four main monthly indicators in determining business cy-
cle chronology: industrial production (Production), real manufacturing and trade sales
(Sales), real personal income less transfer payments (Income), and employees on nona-
gricultural payroll (Employment). We use the same coincident variables as the NBER
except for employment. We follow Chauvet (1998) and Chauvet and Hamilton (2005)
in using instead civilian labor force in nonagricultural industries (TCE) rather than
employees on nonagricultural payrolls (ENAP) as used by the NBER. ENAP is based
on a survey of business establishments, whereas TCE is based on a survey among house-
holds. These two employment series have generally moved together, with some minor
di¤erences around business cycle turning points. Although the revised ENAP may
re�ect better labor conditions ex-post, its performance in capturing real time cyclical
changes in the economy is weaker compared to the household survey (TCE). In fact,
ENAP tends to lag business cycle in real time, whereas TCE coincides with business
cycle phases and calls turning points a lot faster, which will be an important feature in
the analysis of the probability of a recession in our endpoint.

All series are transformed as 100 times their log �rst di¤erence and the sample
available is from February 1959 to October 2007.

4.3. Results

Table 1 reports the posterior means of the coe¢ cients for the �ve models considered. The
results indicate a signi�cant relationship between a decrease in the coincident variables
and the probability of a recession.

The coe¢ cients in models 2 and 3 are substantially di¤erent before and after break.
In particular, the post-break parameters are a lot higher in absolute values. Recall that
since the scale of the innovation and the coe¢ cient parameters � are not separately
identi�ed (i.e, ��0 = �=��0 and ��1 = �=��1 ), this could possibly be re�ecting the fact
that the innovation variance has decreased since the break. The coe¢ cients from model
1 are roughly an average of the coe¢ cients for the periods pre and post break in models
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2 and 3. Nevertheless, the results from models 1, 2, and 3 di¤er in several ways.
First, we �nd strong evidence of the existence of a structural break in the relation-

ship between the monthly coincident series and the business cycle with the natural log
of the Bayes factor equals to �295:5 (model 3 vs model 1). However, even with 90; 000
iterations the Bayes factor is not precisely estimated, which suggests uncertainty re-
garding the location of the breakpoint. Figure 1 plots the posterior break probability
obtained from model 3, which endogenously estimates the breakpoint. In contrast to
previous studies that �nd a break in 1984 in the volatility of GDP and other macroeco-
nomic series, we �nd that the change in the relationship between the coincident series
and the business cycle phase indicator occurred between 1977 and 1982. Thus, �xing
a breakpoint in 1984 as in model 2 is not appropriate for monitoring business cycles
with the series studied, even though we know it captures the decline in variation in
many business cycle variables including the covariates used in our study. In addition,
the spanning of the posterior distribution of the probabilities of a break over �ve years
indicates considerable uncertainty about its exact location.

The posterior means of the conditional mean parameters from models 4 and 5 can
not be directly compared to the others since they assume changing variance across
business cycles and, in the case of model 5, an autoregressive component is also included.
Table 1 shows the di¤erent values obtained for the variance across the six complete
business cycles in the sample for these models. The estimated variances re�ect similar
�ndings across di¤erent business cycles, with the highest value occurring in the shortest
business cycle in 1980-1982, which is four times the average variance. This corresponds
to the period in which the Federal Reserve changed its operating procedures between
1979-1982, and the US economic experienced high volatility. Notice that this is also
the period for which model 3 indicates a structural break. However, the Bayes factor
strongly favors recurrent breaks (model 4) over a single endogenous break (model 3),
with lnBF = �29:4. Using Je¤rey�s (1961) rule, the factors indicate a decisive evidence
against the null.10

On the other hand, the variances with lowest values are associated with the long
expansions of the 1960s, 1980s, 1990s, and 2000s. An interesting feature shown in the
business cycle speci�c variance models is that the innovation variance shows a declining
trend over time, especially since 1982. In fact, apart from the volatile time during the
1975-1980 business cycle, the variance has been decreasing since the beginning of the
sample. Thus, imposing constant variance across business cycles can be misleading.

The consideration of recurrent shifts is important as the parameters change con-
siderably as shown in Table 1. In addition, where the break occurs is important in

10Je¤rey�s rule assesses evidence against the null as follows: lnBF > 0 evidence supports null; �1:15 <
lnBF < 0 very slight evidence against null; �2:3 < lnBF < �1:15 slight evidence against the null;
�4:6 < lnBF < �2:3 strong to very strong evidence against the null; lnBF < �4:6 decisive evidence
against null.
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determining the probabilities of recession. In particular, the uncertainty over the break-
points implies very di¤erent signal to noise ratio regarding prediction of recessions. The
posterior mean of the probabilities of recession for the probit models is given by �(:)
for draws of the parameters, and is plotted in Figure 2 (full sample) and Figure 3 (last
two decades). The probabilities consistently rise before each of the seven recessions in
the sample as dated by the NBER. However, there are marked di¤erences among the
signal to noise ratios of each model. Although the probabilities are somewhat similar
in the �rst part of the sample across models 1, 2, and 3, the speci�cations assuming a
known or endogenous breakpoint obtain di¤erent predictions. Model 1 is noisy during
expansions and signals recessions with relatively low probability values. On the other
hand, the performance of model 3 with endogenous break is better than the simpler
versions. This is also the case for models 4 and 5 compared to the other models, which
show a much clearer dichotomy between recessions and expansions and, therefore, less
uncertainty regarding interpretation of these probabilities.

This evidence is formalized in Table 3, which reports the predictive ability of the
models in correctly signaling recessions and expansions with a cuto¤ of 50% (classi�-
cation table). It is important to note that this is not a pseudo real time exercise since
we use full sample estimates and, perhaps more importantly, we do not use the vintage
of the data available to analysts during these periods. With these caveats it can be
seen that all models show good performance in predicting expansions with speci�city
(percentage of correct expansion predictions) of 97% and above. The best performance
is obtained for model 4 with a rate of 99:6%, followed by model 5, with 99:4%. Model
5 has an additional advantage since the autoregressive latent variable is found using
the whole sample information. Nevertheless, its ex-post classi�cation ability is very
impressive.

Expansion phases are long in the U.S. while recessions are short and abrupt events,
with a minimum duration of 6 months11 and a maximum length of 16 months, which
occurred in 1982. On the other hand, expansions have a minium duration of one year
and an average length of 57 months in the sample studied. The duration of these
phases makes it easier to correctly predict expansions than recessions. Consequently,
the ability to predict recessions is more variable across speci�cations. Model 1 exhibits
the worst sensitivity performance (percentage of correct recession predictions), with a
rate of 29%. The consideration of a breakpoint increases substantially the sensitivity
of models 2 and 3 compared to model 1, with a rate of 40% and 45%, respectively.
Note that endogenously estimating the breakpoint improves the ability of the model to
predict recessions compared to imposing a �xed breakdate in 1984.

Finally, the models with recurrent breaks across business cycles are the ones that

11The NBER de�nes recession as a broad contraction of the economy with a minimum duration of 6
months.
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present the best performance in predicting recessions. The sensitivity of model 4 is 71%;
and of model 5 is 84%. We also compare the predictive ability of the speci�cations with
a naive model that assumes constant probability. The total percentage gain of model
1 over the naive model is only 18%, while it is 22% for model 2, and 30% for model 3.
Once again, models 4 and 5 display far superior performance than the other models with
an overall percentage gain over the naive model of 68% and 80%, respectively. These
numbers are impressive and indicate the importance of considering recurrent breaks for
improving the predictive performance in the probit models.

From the evidence above, the speci�cation that considers both business cycle-speci�c
variance and autoregressive parameter (model 5) is the one with better sensitivity and
percentage gain. Figures 2 and 3 show that the posterior mean probabilities of recession
for this model are very smooth, with very low noise during expansions. Note that
although the probabilities consistently increase above 70% during each recession in
the sample, the model tends to oversmooth the signals at the beginning of recessions
(i.e. peaks) yielding delayed recession calls. Table 3 shows the lead and lag signals of
recessions for the alternative speci�cations. Model 5 is the one with worst performance,
consistently calling recessions with delays longer than models 2, 3, and 4. Under this
criterion, model 4 is the one with best overall ability to timely signal recessions. This
is also con�rmed by Yates�(1982) decomposition in Table 4, which shows that model 4
has the highest accuracy rate (lowest mean squared error).

4.3.1. Current Recession Probabilities

The last observation available as of December 2007 (when this article was originally
written) is for October 2007. Over the early fall of 2007 the perception that the US
might have been entering a recession increased considerably. The probability of recession
for October 2007 is 39% for model 1 and 37% for model 3. This probability is even higher
for model 2, 54%, which indicates the beginning of a recession under a cuto¤ of 0:5.
However, model 4 indicates a much smaller probability for this month, 22% and for
model 5 this probability is only 1%. Given the di¤erent performance of the alternative
models in correctly and timely signalling a recession, the posterior probabilities do
not give much information on the uncertainty regarding these values. Figure 4 shows
the posterior cumulative distribution function of the probability of a recession state in
October 2007. Under the assumption of a break in 1984 (model 2), 95% of the posterior
on the probability of recession is between 0:3 and 0:7, while if one assumes recurrent
breaks (model 4), 95% of the posterior on the probability of a recession is between
0:02 and 0:28. That is, the uncertainty regarding the recession probability decreases
substantially when taking into account business cycle-speci�c variances in model 4. For
model 5, 95% of the posterior on the probability of a recession is between 0 and 0:01,
but given its delay in calling recessions, the results from model 4 are more reliable based
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on previous performance.12

Note that the models examined do not have information on the probability of a
recession in November 2007 and subsequent months, since they are devised to monitor
current economic conditions as they only use coincident (not leading) variables. This
on its own carries a lot of uncertainty and it is an important task since the NBER takes
between 6 months to 20 months to announce the beginning or end of a recession after
the fact.

5. Conclusions

This paper extends a standard probit speci�cation for monitoring business cycles to
account for the possibility of single breakpoint or recurrent shifts and serially correlated
errors. A Gibbs sampling algorithm is used for estimating the e¤ects of breaks on the
estimated probability of recession.

We �nd strong evidence of the existence of a break in the relationship between the
monthly coincident series and the business cycle. However, the results suggest con-
siderable uncertainty about its exact location and gives support to the assumption of
recurrent breaks. This is con�rmed by the Bayes factor and the superior classi�cation
performance of models that allow for recurrent shifts in the innovation variance. The
recession probabilities for these models provide a clearer classi�cation of the business
cycle into expansion and recession periods, and superior performance in the ability to
correctly call recessions and to avoid false recession signals in-sample. The results in-
dicate the importance of considering recurrent breaks for monitoring business cycles.
In an on-going research we are studying ways to use these models for real-time classi-
�cation with limited information on the dating decisions of the NBER business cycle
committee.

Appendix

The formula required for the Gibbs sampler draws for models 4 and 5 is derived below.
The full conditional distribution under the �rst order autoregressive assumption

f(Y �t jY �T ; : : : ; Y �t+1; Y �t�1; : : : ; Y �K+1)

is equivalent to:
f(Y �t jY �t+1; Y �t�1):

Since Y �t+1; Y
�
t ; Y

�
t�1 have a joint normal distribution, the conditional distribution is

normal. Under the assumption that all initial values are zero, we can write the latent
12The low probabilities of recession from models 4 and 5 are in agreement with Feldstein�s statement

that the economy was not in a recession in October or November 2007 (Feldstein, December 2007)
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time series Y �t at time t as:

Y �t = eXt + t�K�1X
s=0

�s�(t� s)"t�s:

Thus, the latent time series conditional on the yield is multivariate normal with mean

vector
h eXt+1; eXt; eXt�1i and variance matrix:264 V (eYt+1) �V (eYt) �2V (eYt�1)

�V (eYt) V (eYt) �V (eYt�)
�2V (eYt�1) �V (eYt�1) V (eYt�1)

375 :
The results are then based on standard relationships between joint normals and condi-
tional normals.
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Table 1 - Posterior Mean Parameters across Models 
Parameters Model 1 Model 2 

t<1984:01     t≥ 1984:01 
Model 3 

τ <break      τ ≥ break 
Model 4 Model 5 

0β  -0.98 -0.56                  -1.69 -0.63                  -1.71 -0.67 -0.21 

IPβ  -0.64 -0.53                  -1.73 -0.45                  -1.58 -0.52 -0.43 

Saleβ  -0.17 -0.10                  -0.32 -0.15                  -0.23  -0.09 -0.37 

Incomeβ  -1.18 -0.94                  -2.16 -1.10                  -2.21 -0.89 -1.05 

Employmentβ  -0.93 -0.33                  -2.57 -0.71                  -1.89 -0.89 -0.89 

θ  - - - - 0.70 
Innovation 
Variance 

1 1 1 - - 

1961:3-1970:11 - - - 1.09 1.84 
1970:12-1975:3 - - - 0.54 0.63 
1975:4-1980:7 - - - 3.84 2.54 
1980:8-1982:11 - - - 0.23 0.54 
1982:12-1991:3 - - - 0.21 0.23 
1991:4-2001:12 - - - 0.15 0.19 
 
 

Table 2 – Classification Table: Predictive Ability to Signal Recessions and Expansions 
 Model 1 

tY =0 tY =1 Total 
Model 2 

tY =0 tY =1 Total 
Model 3 

tY =0 tY =1 Total 
Model 4 

tY =0 tY =1 Total 
Model 5 

tY =0 tY =1 Total 
P( tY =1) ≤0.5 494      58      552 488      49      537 491     45       536 501      24       525 500      13       513 
P( tY =1) >0.5 9          24        33 15         33       48 12       37         49  2         58         60    3      69         72 
Total 503      82      585 503      82      585 503      82       585 503      82       585 503     82        585 
Correct 494      24      518 488      33      521 491     37        528 501      58       559 500     69        569 
% Correct 98.2    29.3    88.5 97.0    40.2    89.1 97.6    45.1     90.3 99.6    70.7     95.6 99.4    84.1     97.3 
% Incorrect  1.8     70.7    11.4  3.0     59.8    10.9  2.4     54.9      9.7  0.4     29.3      4.4 0.6      15.8      2.7 
Total Gain  -1.8    29.3     2.6 -3.0    40.2      3.1 -2.4    45.1       4.3 -0.4    70.7      9.6 -0.6     84.1    11.3 
% Gain    -      29.3    18.3    -      40.2     22.0    -      45.1     30.5    -      70.7     68.3   -        84.4    80.5 
 

 Naïve Model 
tY =0    tY =1    Total 

P( tY =1) ≤0.5 503         82         585 
P( tY =1) >0.5 0              0            0 
Total 503         82         585 
Correct 503          0          503 
% Correct 100          0          86.0 
% Incorrect 0            100        14.0 

 
________________________________________________________________________________________ 
(*) The Total and % Gain is over the Naïve Model. 
Recall that tY =0 for expansions and tY =1 for recessions. For example, model 1 correctly signals 24 out 82 
recession observations for a probability cutoff of 50% P( tY =1) >0.5). 
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Table 3 – Peak Signals of NBER Recessions 
______________________________________________________________________________________________ 

 Peaks NBER Model 1 Model 2 Model 3 Model 4 Model 5 
______________________________________________________________________________________________ 

 1960:04 +1 +1 +1 +1 -3 
 1969:12 -2 -2 -2 -2 -2 
 1973:11 -3 +2 +2 -2 -3 
 1980:01 -3 -3 -3 -2 -4 
 1981:07 -5 -3 -3 -3 -3 
 1990:07 -3 -3 -3 -2 -4 
 2001:03 -2 -2 -2 -1 -2 

______________________________________________________________________________________________ 
(*) The criterion adopted to determine turning points is if the probability of recession is greater than 
50%, P( tY =1) >0.5). 
(**) Leads are represented by (+) and lags by (-).  For example, model 5 indicates the beginning of the 
 2001 recession with a lag of two months. 
 

  
    Table  4 – Yates’ Decomposition 

_________________________________________________________________________________________________ 
  MSE Var (x) ΔVar (f) Min Var (f) (μf - μx)2 2*cov (f, x) 

        __________________________________________________________________________________________________ 
 Model 1 0.08410 0.12073 0.03398 0.00318 0.00001 0.07380
 Model 2 0.08011 0.12073 0.04504 0.00660 0.00000 0.09226
 Model 3 0.07820 0.12073 0.04380 0.00652 0.00013 0.09298
 Model 4 0.05543 0.12073 0.05258 0.01643 0.00042 0.13474
 Model 5 0.07075 0.12073 0.08329 0.04643 0.00027 0.17997

  _________________________________________________________________________________________________ 
      Yates’ decomposition is: MSE = Var (x)+ Δ Var (f) + Min Var(f)+ (μf - μ x)2- 2Cov (f,x), where x  
        is the NBER dummy, f is the prediction from the model, var is the variance, μ is  the mean, 
        cov is the covariance,  Min Var(f) =  (μf|x-1 - μ f|x=0)2 Var (x), and Δ Var (f) = Var(f) - Min Var(f). 
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Figure 1 – Posterior Distribution of Probability of a Breakpoint From Model 3 
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Figure 2 – Posterior Mean Probabilities of Recession for the Full Sample and NBER-Dating 
(Shaded Area)   
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Figure 3 – Posterior Mean Probabilities of Recession for the Last Two Decades and NBER 
Dated Recessions (Shaded Area) 
  

.0

.1

.2

.3

.4

.5

.6

.7

.8

1985 1990 1995 2000 2005

Model 1

0.0

0.2

0.4

0.6

0.8

1.0

1985 1990 1995 2000 2005

Model 2

0.0

0.2

0.4

0.6

0.8

1.0

1985 1990 1995 2000 2005

Model 3

0.0

0.2

0.4

0.6

0.8

1.0

1985 1990 1995 2000 2005

Model 4

0.0

0.2

0.4

0.6

0.8

1.0

1985 1990 1995 2000 2005

Model 5



 25

Figure 4 – Posterior Cumulative Distribution Function of the Probability of Recession in October 2007 
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