
Business Cycle Monitoring with Structural Changes∗

Marcelle Chauvet and Simon Potter †

First Draft: December 2007
This Draft: April 2009

Abstract

This paper examines the predictive content of coincident variables for
monitoring U.S. recessions in the presence of instabilities. We propose several
specifications of a probit model for classifying phases of the business cycle.
We find strong evidence in favor of the ones that allow for the possibility that
the economy has experienced recurrent breaks. The recession probabilities
of these models provide a clearer classification of the business cycle into
expansion and recession periods, and superior performance in the ability
to correctly call recessions and to avoid false recession signals. Overall, the
sensitivity, specificity, and accuracy of these models are far superior as well as
their ability to timely signal recessions. The results indicate the importance
of considering recurrent breaks for monitoring business cycles.
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1. Introduction

Since the seminal work of Burns and Mitchell (1946), a traditional method of
monitoring the economy is through the use of coincident indicators. Burns and
Mitchell classified hundred of macroeconomic variables into lagging, coincident,
or leading according to the timing of their cyclical movements with the U.S.
economic activity, in a research sponsored by the National Bureau of Economic
Research (NBER). The same main coincident variables found in this study are
still currently being used to date turning points of business cycles by the NBER
Business Cycle Dating Committee, which is generally considered authoritative in
dating recessions. These indicators are some of the most watched series by the
press, businesses, policymakers, and stock market participants.

The reliability of predictions using these coincident variables in stationary
models may have been compromised by the possibility of occurrence of structural
breaks in the functioning of the economy in the last few decades. Several authors
have found that the U.S. business cycle has experienced a substantial decline in
its amplitude since the mid-1980s (e.g. McConnell and Perez-Quiros 2000, Koop
and Potter 2000, Chauvet and Potter 2001, Van Dijk and Sensier 2004, among
several others). An increased stability of business cycle fluctuations has important
implications since it affects the frequency, duration, and probabilities of future
recessions and expansions.

This paper examines the predictive content of coincident variables for moni-
toring U.S. recessions using several specifications of the probit model. First, we
expand on previous research by considering probit specifications with fixed or
endogenous breakpoints. In contrast with the research that investigates struc-
tural breaks in macroeconomic variables per se, we are interested in examining
the stability of the relationship among the coincident variables and the business
cycle. We find strong evidence of structural instability. Although the specifica-
tion considered only a single endogenous break, there was substantial uncertainty
about its location, spanning over five years. This is an important finding, given
that the estimated probability of recessions is affected by both the presence as
well as the location of the break.

Stabilization of the business cycle is not a new finding. The long expansion
in the 1960s also spurred debates about economic stabilization. This is summa-
rized in Arthur Burns’ (1960) statement describing the stabilization of the U.S.
economy since World War II:

“There is no parallel for this sequence of mild - or such a sequence
of brief - contractions, at least during the past hundred years in our
own country.”
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Burns’ statement refers to the decrease in volatility (‘mildness’) of the U.S.
business cycle and to changes in the duration (’briefness’) of business cycle phases
after the War. A large literature followed studying these questions. The consen-
sual evidence was that an increased stabilization occurred in the U.S. economy
comparing the periods before and after the War, but the magnitude of this sta-
bility was the subject of intense debates. Now, forty years later, economists are
revisiting the evidence about the post-War business cycle stabilization - this time
motivated by the finding of a structural break in the volatility of the U.S. out-
put growth in the first quarter of 1984. Chauvet and Popli (2008) investigate
whether this recent change is unique to the U.S. and particular to the 1980s or if
it is part of a long run trend in volatility shared by several countries. They find
strong evidence of multiple structural breaks leading to more stability in these
countries over time, and that the recent decrease in U.S. output volatility is part
of a broader long-term trend shared by all countries studied.

Based on these findings and on the large uncertainty regarding the location
of the break in the probit specification studied, we propose an extension of the
model that accounts for the potential existence of multiple shifts. We use busi-
ness cycle troughs to date the breakpoints. Thus, assuming that business cycles
are recurrent fluctuations, this is a model of recurrent breaks. We restrict the
form of the break to be a change in the innovation variance implicit in the probit
model. Most work using probit models in different applications assume stability
and independent errors. We further extend the probit specification to allow for
the possibility of serially correlated errors, introducing an autoregressive process
for the latent variable. The models proposed are estimated using Bayesian meth-
ods and can be applied to different questions in a variety of fields that involve
statistical surveillance, change point detection, tracking signals, among several
others.

We find that the best fitting specification in terms of Bayes factor allows for
recurrent breaks in the innovation variance as well as an autoregressive compo-
nent. Analysis of the estimated probability of recessions shows that allowing for
parameter changes increases substantially the signal to noise ratio. In particu-
lar, the recession probabilities for these models provide a clearer classification
of the business cycle into expansion and recession periods and superior perfor-
mance in the ability to correctly call recessions and to avoid false recession signals
in-sample. Overall, the sensitivity, specificity, and accuracy (i.e., mean squared
errors) of these models are far superior than for the models with a single break or
with no break. On the other hand, the standard probit model with no break is the
one with the lowest predictive ability. Finally, regarding the ability to timely sig-
nal recession, the model that considers multiple shifts in the innovation variances
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displays the best overall performance. These results indicate the importance of
considering recurrent breaks for improving the monitoring of business cycles.

The issue studied is quite topical as there is currently a lot of speculation on
whether the economy has recently entered into a recession. Most of the models
considered indicate weaker economic activity in the end of the available sample
of October 2007.1 However, the value of the probability of a recession differs
across specifications with weaker signals arising from the models with multiple
shifts in the innovation variance.2 On the other hand, the higher probability of
recession from the probit model that considers no break or a single break reflects
the uncertainty regarding the current state of the economy, and the importance
of models with improved prediction ability. The prediction from the model with
recurrent breaks is more in accord with the judgement that the economy was not
in a recession in October 2007 by Martin Feldstein (2007), one of the members of
the NBER dating Business Cycle Dating Committee.3 On the other hand, when
the models are estimated using data up to December 2007, the probabilities of
recession decrease substantially across all models, except for one that consider
recurrent breaks.4

The paper is organized as follows. Section two introduces the probit model and
discusses our various extensions. The third section describes the Gibbs sampler.
In the fourth section the empirical results from the alternative specifications are
presented. The fifth section concludes.

1The first draft of this paper was written in December 2007 with data available up to October
2007. The paper was revised to include real time data up to December 2007. At this time, there
was no information on the beginning of the 2007-2009 recession, which was only announced by
the NBER (as starting in December 2007) one year later.

2The models are devised to monitor current economic conditions as they only use coincident
(not leading) variables. Thus, the models do not have information on future probabilities of a
recession from the last observation on.

3Martin Feldstein (December 16, 2007):

”Because monthly data for December won’t be available until next year, we cannot
be sure whether the economy has turned down. The measure of personal income
for October suggests that the economy may have peaked and begun to decline,
but the data for employment and industrial production in November and for sales
in October show continued growth. My judgment is that when we look back at
December with the data released in 2008 we will conclude that the economy is not
in recession now.”

4Using hindsight, the model with recurrent breaks was the only one that correctly yielded
strong signal of a recession beginning in December 2007.
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2. The Models

2.1. Standard Probit Model

The standard probit model assumes an unobservable variable Y ∗t with a corre-
sponding binary indicator Yt for whether Y ∗t is positive or negative:

Yt =
0 if Y ∗t < 0
1 if Y ∗t ≥ 0 . (2.1)

In our context, Y ∗t represents the state of the economy as measured by the NBER
recession dating: Yt takes the value 0 if the observation is an expansion or 1 if it
is a recession. The latent variable Y ∗t is related to the regressors Xit according
to the equation:

Y ∗t = β0 + β Xt + εt εt|Xt ∼ i.i.d.N(0, 1) (2.2)

where Xt = {Xit: i = Prod, Sales, Inc, and Emp} are the coincident macroeco-
nomic variables industrial production, sales, personal income, and employment,
and β = {βi : i = Prod, Sales, Inc, and Emp} are regression coefficients. The
model assumes that:

P (Y ∗t ≥ 0|Xt,β) = Φ[β0 + βXt], (2.3)

where Φ is the cumulative distribution function of the standard normal distribu-
tion, β = [β0,β],and P (Y

∗
t ≥ 0|Xt,β) is the conditional probability of a recession.

This standard model can be interpreted as capturing the behavior of the business
cycle dating committee in an economy with no changes.

2.2. Extensions of the Probit Model

We extend the standard probit model in three ways. First, we allow for the
presence of a fixed or endogenous breakpoint. Second, we allow the variance of
the innovation to change with the business cycle, which accounts for recurrent
breaks in the innovation variance. Finally, we allow for the possibility of serially
correlated error by adding an autoregressive component to the model. These
alternative specifications imply very different predictive ability, as discussed in
section 4. All models are estimated using Bayesian methods.
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2.2.1. Probit Model with a Breakpoint

In order to allow for structural breaks, the unobserved Y ∗t is modeled as a
Gaussian process with constant unit innovation variance and conditional mean:

E(Y ∗t ) = β(τ) Zt(τ), (2.4)

where τ represents a break point and Zt(τ) is the 10× 1 vector:

Zt(τ) = [1(τ1), 1(τ2), 1(τ1)Xit, 1(τ2)Xit] ,

For τ1 ∈ {t : 1 ≤ t ≤ τ} and for τ2 ∈ {t : τ < t ≤ T}. Let the collection of
parameter vectors {β(τ) ∈ [τ1, τ2]} be defined by:

[β0(τ1),β0(τ2),β(τ1),β(τ2)] .

The date τ can be fixed or be endogenously estimated as explained in the next
section. The use of Bayesian methods allows us to capture the joint uncertainty
over the timing of the breakpoint and the parameter estimates.

2.2.2. Probit Model with Recurrent Breakpoints

If Y ∗t is multiplied by any positive constant, the indicator variable Yt is not
changed, which implies that the coefficients {β0,β} can be estimated only up to
a positive multiple. Thus, the standard probit model assumes that the variance
of the errors is equal to one to fix the scale of Y ∗t . We consider a more general
specification in which the variance of the innovation may change:

Y ∗t = β0 + β Xt + σ(t)εt, (2.5)

and the initial business cycle is partially observed starting at t = 1 (t1 = 0). We
restrict this specification by assuming that the innovation variance is the same
within each business cycle.

We assume that a business cycle starts the month after a NBER trough and
continues up to the month of the next NBER trough. If tn−1 corresponds to
the beginning of business cycle n − 1, then the dates of business cycle n are
t ∈ {tn−1 + 1, . . . , tn − 1, tn}. Let the periods in which the economy is in an
expansion or recession of business cycle n be denoted by the sets En and Rn,
respectively. Hence, business cycle expansions and recessions are classified by
E = ∪En and R = ∪Rn, respectively.where

σn = σ(t) if tn−1 < t ≤ tn, n = 1, . . . N,
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Since the scale of the innovation and the coefficient parameters cannot be sep-
arately identified, this can be interpreted as a restricted time-varying parame-
ter specification, in which the innovation variance is normalized to 1 across all
business cycles, but each cycle has a unique intercept βn0 = β0/σn and slope
coefficients βni = βi/σn. Another interpretation of the model is that the scale
of shocks themselves may change across business cycles. This allows for the pos-
sibility that the size of the innovation variance may change depending on the
duration of the business cycle. More importantly, since it allows for potential re-
current breakpoints across business cycles, it can capture long run trends on the
variance such as whether it has been decreasing over time. For example, suppose
that the change in the scale of the shocks is common across the business cycle
variables in Xt and is the same as the change in scale to the innovation to the
latent variable. In this case our approach could alternatively be interpreted as
keeping constant the scale of the business cycle variables to maintain the same
relationship to business cycle phases. Thus, in this model we assume that:

P (Y ∗t ≥ 0|Xt,β) = Φn[(β0 + β Xt] = Φ[(β0 + β Xt)/σn]. (2.6)

We assume in the estimation below that σn are a priori independent across busi-
ness cycles, as in Chauvet and Potter (2005). 5

2.2.3. Probit Model with Multiple Breakpoints and Dependence in the
Latent Variable

We further extend the probit model to allow for the possibility that the latent
variable Y ∗t follows a first order autoregressive process:

Y ∗t = β0 + β Xt + θY ∗t−1 + σ(t)εt, (2.7)

where the autoregressive parameter |θ| < 1. The intention here is to capture
dependence in the business cycle phases that comes from the concept that reces-
sions and expansions should have a certain duration. In our previous work on
recession forecasting we have found that allowing for dependence can eliminate a
number of false positives.

5An interesting extension is proposed in Koop and Potter (2007), who allow for dependence
across business cycles. One could also consider the unrestricted model with time variation each
month, as suggested by the editor. We are implementing this in an on-going extension of our
framework by allowing for stochastic volatility in the innovation variance with the initial value
always set to unity.
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2.2.4. Likelihood Function

The likelihood function for the most general model that consider recurrent break-
points in the variances, a single breakpoint in the conditional mean, and autore-
gressive process for the latent variable is:

(Y T |XT
i ,β, {σn} , θ, y0) (2.8)

=
N

n=1

{
t∈Rn

Φn[β(τ) Zt(τ) + θY ∗t−1]
t∈En

(1−Φn[β(τ) Zt(τ) + θY ∗t−1])}.

All of the other models considered are nested within this likelihood function with
appropriate parameter restrictions.

2.2.5. Models Estimated

We estimate five different specifications:6

1. Model 1: Standard probit with no break;

2. Model 2: Probit model with a fixed break in 1984:01;

3. Model 3: Probit model with an endogenous break;

4. Model 4: Probit model with recurrent breaks - business cycle specific vari-
ance;

5. Model 5: Probit model with recurrent breaks and autoregressive latent
process.

3. Estimation Method

We use Bayesian methods to evaluate the posterior properties of the probit spec-
ifications. The Bayesian techniques used have several advantages: the Gibbs
sampler can be used to simulate the latent variable, which simplifies considerably
the computation of the likelihood function and of Bayes factors used to compare
the various models. This can be implemented using the Savage-Dickey Density
ratio within the Gibbs sampler; the distributions over the probability predictions
contain information on uncertainty regarding parameters, existence or location

6We opted not to estimate an model with an endogenous break in the conditional mean and
multiple breaks with an autoregressive latent process because of the computational difficulties
we encountered with Model 3.
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of breakpoints, and over the most recent value of the latent variable. Latent
variables determine the existence and location of the break. Conditional on the
latent variable the model parameters are generated, while conditional on the pa-
rameters, the latent variable is generated. These simulations are repeated until
an adequate sample is obtained from the posterior distributions.

3.1. Models with a Single Breakpoint

For model 3, we assume that the prior on β(τ) is identical and independent across
different breakpoints. Since we need a non-diffuse prior in order to calculate the
marginal likelihood, we assume that the prior distributions of β(τ) are normal
with mean {β} and variance D. The prior distribution π on τ is assumed to be
discrete uniform over support [t1, t2].

The Gibbs sampler procedure generates draws of the latent Y ∗t conditional on
a draw of {β(τ), τ}. The sampler is:

1. Draw Y ∗t < 0 by adding a draw from the truncated normal on (−∞,−Zt(τ) β(τ))
to Zt(τ) β(τ) if t is an expansion period.

2. Draw Y ∗t ≥ 0 by adding a draw from the truncated normal on (−Zt(τ) β(τ),∞)
to Zt(τ) β(τ) if t is a recession period.

Given this sequence of draws for Y ∗t we can then construct the marginal
likelihood for each possible breakpoint. Defining Y∗ = [Y ∗1 , . . . , Y ∗T ] and Z(τ) =
[Z1(τ) , . . . , ZT (τ) ] we have:

f(Y∗|τ) =
det(D

−1
(τ))

det(D−1)

−0.5

× exp −0.5(υs2 + (β(τ)− β(τ))Z(τ) Z(τ)(β(τ)− β(τ))
+(β(τ)− β)D−1(β(τ)− β)

,

where υs2 = (Y∗ −Z(τ)β(τ)) (Y∗ −Z(τ)β(τ)) is the sum of the squared errors,

D(τ) = D−1 + Z(τ) Z(τ)
−1
is the posterior variance, β(τ) = D(τ) D−1β + Z(τ)Y∗

is the posterior mean, and β(τ) = [Z(τ) Z(τ)]−1Z(τ)Y∗ is the ordinary least
squares estimator.

We find the marginal likelihood for each potential breakpoint τ , and then
draw a new value of τ from the probability mass function:

f(τ |Y∗)
t2
τ=t1 f(τ |Y∗)

.
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Given the draw of τ , we draw β(τ) from the normal distribution with mean β(τ)
and variance D(τ).

3.2. Models with Recurrent Breakpoints

The model with an autoregressive process requires multiple integration over the
unobserved lagged variable. We use the Gibbs sampler to evaluate the likelihood
function as described below.7

3.2.1. Obtaining Draws of the Latent Variable

The Gibbs sampler starts by generating draws of the latent Y ∗t conditional on
(β0,β, {σn}, θ) and the observed coincident variables. Let Xtβ = β0 + β Xt. If
θ = 0, then the sampler would have the following simple form:

1. Draw εt from the truncated normal on (−∞,−Xtβ/σn) if t is an expansion
period of business cycle n .

2. Draw εt from the truncated normal on [−Xtβ/σn,∞) if t is a recession
period of business cycle n.

The lagged value of the latent variable in the conditional mean makes the
sampler more complex. Consider first generating the last value in the observed
sample, Y ∗T . If we could condition on a value for Y

∗
T−1, then we could use the

steps above by redefining XTβ = β0+β XiT+θY
∗
T−1. This would generate a draw

of the last period value of the latent variable. With this ‘new’ value of Y ∗T and
the ‘old’ value of Y ∗T−2, we can use the a priori joint normality of the underlying
latent variable model to form a conditional normal distribution for Y ∗T−1. The
exact form of this distribution depends on an assumption about the initial value
Y ∗0 . We simplify the analysis by assuming that Y ∗0 = β0 + β Xi0 = 0. Then, as
shown in the appendix, we have a priori the conditional normal distribution with
mean:8

XT−1 + θ
V (YT−1)
V (YT−2)

V (YT ) θ2V (YT−2)
θ2V (YT−2) V (YT−2)

−1
Y ∗T −XT

Y ∗T−2 −XT−2
,

7Geweke (1999) and Chib (2001) are seminal work on modern Bayesian computational tech-
niques. These papers, their reference to earlier work, as well as Dueker (1999, 2001) are closely
related to the techniques we use to estimate the models here and in Chauvet and Potter (2002,
2005).

8Dueker (1999) derives this conditional distribution using an alternative representation. Our
choice of this representation is based on the fact that it shows directly the dependence on the
history of the coincident variables and the business cycle specific variances.

10



and variance:

V (YT−1)− θ2
V (YT−1)
V (YT−2)

V (YT ) θ2V (YT−2)
θ2V (YT−2) V (YT−2)

−1
V (YT−1)
V (YT−2)

,

where

V (Yt) =
t−1

s=0

θ2sσ2(t− s)

and

Xt =
t−1

s=0

θsXt−sβ.

Hence, we draw from the appropriate truncated normal above to obtain a new
draw of Y ∗T−1. This procedure is repeated until we get to the initial observation
period. The value of Y ∗1 is drawn in a similar manner to Y ∗T , by conditioning on
the new draw of Y ∗2 . However, this value has a different form, since its mean is
given by:

X1β +
θσ2(1)

σ2(1) + θ2σ2(2)
Y ∗2 −X2 ,

and variance by:

σ2(1)− θ2σ4(1)

σ2(1) + θ2σ2(2)
.

3.2.2. Obtaining Draws of the Model Parameters

Once obtained the sequence of draws for {Y ∗t }, we can then generate draws of the
parameters (β, {σn}, θ). We use as priors the normal and gamma distributions,
which generate simple conditional distributions for the posterior. We assume that
the parameters of the conditional mean β are a priori bivariate normal with mean
vector μ(β) and variance matrix V (β). In addition, the autoregressive parameter
θ is assumed to have an a priori truncated normal on (−1, 1) with mean μ(θ)
and variance V (θ) independent of β. Finally the N − 1 variance parameters are
assumed to be a priori independent with identical inverted gamma distributions.

For a draw of β, define the time series W β
t = (Y

∗
t − θY ∗t−1). Then, conditional

on ({Y ∗t }, {σn}, θ), the parameters β are obtained from a normal distribution
with variance matrix:

V (β) = V (β)−1 +
T

t=1

XtXt/σ
2(t)

−1
,
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and mean vector:

μ(β) = V (β) V (β)−1μ(β) +
T

t=1

XtW
β
t /σ

2(t) .

For a draw of θ, define the time series W θ
t = (Y

∗
t −Xtβ). Then, conditional on

({Y ∗t }, {σn},β) a potential draw for θ is from a normal distribution with variance:

V (θ) = V (θ)−1 +
T

t=1

Y ∗2t−1/σ
2(t)

−1
,

and mean:

μ(θ) = V (θ) V (θ)−1μ(θ) +
T

t=1

Y ∗t−1W
β
t /σ

2(t) .

We keep generating draws until the stationary condition is satisfied.
For draws of {σn}, we assume that the prior distributions are independent

inverted gammas with identical degrees of freedom ν and scale νs2. Hence, the
prior mean is νs2/(ν−2). The prior parameters are then updated for the business
cycle n ≥ 2 by:

νn = ν + tn − tn−1
νs2n = νs2 +

tn

t=tn−1+1
(Y ∗t −Xtβ − θY ∗t−1)

2.

3.3. Evaluating Different Models

As discussed above we can calculate Bayes factor for the different models by the
Savage Dickey Density Ratio since the likelihood functions are nested (see Koop
and Potter 1999).9 The Bayes factor gives information on how well each model
fits over the observed sample. Its advantages over the likelihood ratio lie on how
it deals with nuisance parameters and averages over possible parameter values.
These advantages are especially important in assessing whether to choose a model
with breaks over one without, although for the purposes of monitoring a particular
phase of the business cycle it is perhaps more important to consider measures of
predictive performance. This latter point is particularly relevant for model 2, for
which the evidence collected by the Bayes factor before 1984 is irrelevant to any
current prediction or monitoring problem.

9An earlier version of the paper contained details on the calculations of Bayes Factors for
these models.
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4. Empirical Results

We consider five specifications of the probit model as described in section 2.2.5.
First, we estimate the probit models under the assumption of no structural breaks
using both maximum likelihood methods and the Gibbs sampler. We then start
the sampler from the maximum likelihood estimator. For the Gibbs sampler we
use 100, 000 iterations, but calculate the posterior properties only after 10, 000
draws (i.e., we use 90, 000 iterations to estimate the probit models). Next, we
fix a breakpoint in the conditional mean of the probit model in January 1984,
based on the evidence of increased stability in the U.S. economy from this date
onwards, as documented by several authors. Third, we consider estimating the
breakpoint endogenously. Fourth, we allow for the possibility of recurrent breaks
in the variance of the model across business cycles. Finally, we consider a version
of the probit model with changing variance and autocorrelated latent variable.10

4.1. Priors

Although the influence of the prior is very minor given the sample size, we give
to the standard probit model 1 the advantage of a prior centered at its maximum
likelihood estimator. For all models we assume that the prior variance of β is the
identity matrix (β(τ) for models 2 and 3) and the prior mean is the maximum
likelihood estimate from the benchmark model 1, which assumes unit varince, no
breaks, and no autoregressive component. This choice has no effect on the results
(as we have almost 600 observations). In addition, it simplifies the calculation
of the Bayes factors and is preferable to a prior that centered β at zero, which
would imply no knowledge that we are using business cycle variables. It also
implicitly favors the simplest model as its prior is aligned with the maximum
likelihood estimates. With respect to the prior for τ , all possible datapoints
could be used since we are assuming informative priors. However, we decided to
keep a minimum of 10% of the data in each regime, eliminating a proportion of
the endpoints. Notice that this sample still allows for the possibility of a break
after the last business cycle trough of November 2001. It is important to note
that by imposing a breakpoint in Model 2 we are effectively estimating it using
two different samples. This provides a benchmark for the endogenous approach
proposed. We could have made as the breakpoint the start of the 1980s expansion,
but we decided to use the standard finding in the literature of a break in early
1984. Finally, the prior for the autoregressive parameter θ is assumed to be a

10The computation time for the endogenous break model 3 is around 10 hours, whereas it
takes only 2 hours for the most complicated model 5.
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truncated standard normal on (−1, 1), and the prior for the business cycle specific
variances in models 4 and 5 is centered at 1 with diffuse degrees of freedom equal
to 3.

4.2. Data

Based on the seminal work of Burns and Mitchell (1946), the NBER Business
Cycle Dating Committee considers four main monthly indicators in determining
business cycle chronology: industrial production (Production), real manufactur-
ing and trade sales (Sales), real personal income less transfer payments (Income),
and employees on nonagricultural payroll (Employment). We use the same coin-
cident variables as the NBER except for employment. We follow Chauvet (1998)
and Chauvet and Hamilton (2005) in using instead civilian labor force in nona-
gricultural industries (TCE) rather than employees on nonagricultural payrolls
(ENAP) as used by the NBER. ENAP is based on a survey of business estab-
lishments, whereas TCE is based on a survey among households. These two
employment series have generally moved together, with some minor differences
around business cycle turning points. Although the revised ENAP may reflect
better labor conditions ex-post, its performance in capturing real time cyclical
changes in the economy is weaker compared to the household survey (TCE).
In fact, ENAP tends to lag business cycle in real time, whereas TCE coincides
with business cycle phases and calls turning points a lot faster, which will be an
important feature in the analysis of the probability of a recession in our endpoint.

All series are transformed as 100 times their log first difference and the sample
available is from February 1959 to October 2007.

4.3. Results

Table 1 reports the posterior means of the coefficients for the five models con-
sidered. The results indicate a significant relationship between a decrease in the
coincident variables and the probability of a recession.

The coefficients in models 2 and 3 are substantially different before and after
break. In particular, the post-break parameters are a lot higher in absolute values.
Recall that since the scale of the innovation and the coefficient parameters β are
not separately identified (i.e, βτ0 = β/στ0 and βτ1 = β/στ1 ), this could possibly
be reflecting the fact that the innovation variance has decreased since the break.
The coefficients from model 1 are roughly an average of the coefficients for the
periods pre and post break in models 2 and 3. Nevertheless, the results from
models 1, 2, and 3 differ in several ways.
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First, we find strong evidence of the existence of a structural break in the
relationship between the monthly coincident series and the business cycle with the
natural log of the Bayes factor equals to −295.5 (model 3 vs model 1). However,
even with 90, 000 iterations the Bayes factor is not precisely estimated, which
suggests uncertainty regarding the location of the breakpoint. Figure 1 plots the
posterior break probability obtained from model 3, which endogenously estimates
the breakpoint. In contrast to previous studies that find a break in 1984 in
the volatility of GDP and other macroeconomic series, we find that the change
in the relationship between the coincident series and the business cycle phase
indicator occurred between 1977 and 1982. Thus, fixing a breakpoint in 1984 as in
model 2 is not appropriate for monitoring business cycles with the series studied,
even though we know it captures the decline in variation in many business cycle
variables including the covariates used in our study. In addition, the spanning of
the posterior distribution of the probabilities of a break over five years indicates
considerable uncertainty about its exact location.

The posterior means of the conditional mean parameters from models 4 and 5
can not be directly compared to the others since they assume changing variance
across business cycles and, in the case of model 5, an autoregressive component is
also included. Table 1 shows the different values obtained for the variance across
the six complete business cycles in the sample for these models. The estimated
variances reflect similar findings across different business cycles, with the high-
est value occurring in the business cycle between 1975 and 1980, which is four
times the average variance. This corresponds to a period in which the economy
experienced high inflation, an oil shock, and the Federal Reserve changed its op-
erating procedures (between 1979-1982). Notice that this is also the period for
which model 3 indicates a structural break. However, the Bayes factor strongly
favors recurrent breaks (model 4) over a single endogenous break (model 3), with
lnBF = −29.4. Using Jeffrey’s (1961) rule, the factors indicate a decisive evi-
dence against the null.11

On the other hand, the variances with lowest values are associated with the
long expansions of the 1960s, 1980s, 1990s, and 2000s. An interesting feature
shown in the business cycle specific variance models is that the innovation vari-
ance shows a declining trend over time, especially since 1982. In fact, apart from
the volatile time during the 1975-1980 business cycle, the variance has been de-
creasing since the beginning of the sample. Thus, imposing constant variance

11Jeffrey’s rule assesses evidence against the null as follows: lnBF > 0 evidence supports
null; −1.15 < lnBF < 0 very slight evidence against null; −2.3 < lnBF < −1.15 slight
evidence against the null; −4.6 < lnBF < −2.3 strong to very strong evidence against the null;
lnBF < −4.6 decisive evidence against null.
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across business cycles can be misleading.
The consideration of recurrent shifts is important as the parameters change

considerably as shown in Table 1. In addition, where the break occurs is important
in determining the probabilities of recession. In particular, the uncertainty over
the breakpoints implies very different signal to noise ratio regarding prediction
of recessions. The posterior mean of the probabilities of recession for the probit
models is given by Φ(.) for draws of the parameters, and is plotted in Figure 2 (full
sample) and Figure 3 (last two decades). The probabilities consistently rise before
each of the seven recessions in the sample as dated by the NBER. However, there
are marked differences among the signal to noise ratios of each model. Although
the probabilities are somewhat similar in the first part of the sample across models
1, 2, and 3, the specifications assuming a known or endogenous breakpoint obtain
different predictions. Model 1 is noisy during expansions and signals recessions
with relatively low probability values. On the other hand, the performance of
model 3 with endogenous break is better than the simpler versions. This is
also the case for models 4 and 5 compared to the other models, which show a
much clearer dichotomy between recessions and expansions and, therefore, less
uncertainty regarding interpretation of these probabilities.

This evidence is formalized in Table 3, which reports the predictive ability of
the models in correctly signaling recessions and expansions with a cutoff of 50%
(classification table). It is important to note that this is not a pseudo real time
exercise since we use full sample estimates and, perhaps more importantly, we do
not use the vintage of the data available to analysts during these periods. With
these caveats it can be seen that all models show good performance in predicting
expansions with specificity (percentage of correct expansion predictions) of 97%
and above. The best performance is obtained for model 4 with a rate of 99.6%,
followed by model 5, with 99.4%. Model 5 has an additional advantage since
the autoregressive latent variable is found using the whole sample information.
Nevertheless, its ex-post classification ability is very impressive.

Expansion phases are long in the U.S. while recessions are short and abrupt
events, with a minimum duration of 6 months12 and a maximum length of 16
months, which occurred in 1982. On the other hand, expansions have a minium
duration of one year and an average length of 57 months in the sample studied.
The duration of these phases makes it easier to correctly predict expansions than
recessions. Consequently, the ability to predict recessions is more variable across
specifications. Model 1 exhibits the worst sensitivity performance (percentage
of correct recession predictions), with a rate of 29%. The consideration of a

12The NBER defines recession as a broad contraction of the economy with a minimum duration
of 6 months.
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breakpoint increases substantially the sensitivity of models 2 and 3 compared
to model 1, with a rate of 40% and 45%, respectively. Note that endogenously
estimating the breakpoint improves the ability of the model to predict recessions
compared to imposing a fixed breakdate in 1984.

Finally, the models with recurrent breaks across business cycles are the ones
that present the best performance in predicting recessions. The sensitivity of
model 4 is 71%, and of model 5 is 84%. We also compare the predictive ability
of the specifications with a naive model that assumes constant probability. The
total percentage gain of model 1 over the naive model is only 18%, while it is
22% for model 2, and 30% for model 3. Once again, models 4 and 5 display far
superior performance than the other models with an overall percentage gain over
the naive model of 68% and 80%, respectively. These numbers are impressive
and indicate the importance of considering recurrent breaks for improving the
predictive performance in the probit models.

From the evidence above, the specification that considers both business cycle-
specific variance and autoregressive parameter (model 5) is the one with better
sensitivity and percentage gain. Figures 2 and 3 show that the posterior mean
probabilities of recession for this model are very smooth, with very low noise
during expansions. Note that although the probabilities consistently increase
above 70% during each recession in the sample, the model tends to oversmooth
the signals at the beginning of recessions (i.e. peaks) yielding delayed recession
calls. Table 3 shows the lead and lag signals of recessions for the alternative
specifications. Model 5 is the one with worst performance, consistently calling
recessions with delays longer than models 2, 3, and 4. Under this criterion,
model 4 is the one with best overall ability to timely signal recessions. This
is also confirmed by Yates’ (1982) decomposition in Table 4, which shows that
model 4 has the highest accuracy rate (lowest mean squared error).

4.3.1. Current Recession Probabilities

The last observation available as of December 2007 (when this article was origi-
nally written) was for October 2007. Over the early fall of 2007 the perception
that the US might have been entering a recession increased considerably. The
probability of recession for October 2007 is 39% for model 1 and 37% for model
3. This probability is even higher for model 2, 54%, which indicates the begin-
ning of a recession under a cutoff of 0.5. However, model 4 indicates a much
smaller probability for this month, 22% and for model 5 this probability is only
1%. Given the different performance of the alternative models in correctly and
timely signalling a recession, the posterior probabilities do not give much infor-
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mation on the uncertainty regarding these values. Figure 4 shows the posterior
cumulative distribution function of the probability of a recession state in October
2007. Under the assumption of a break in 1984 (model 2), 95% of the posterior on
the probability of recession is between 0.3 and 0.7, while if one assumes recurrent
breaks (model 4), 95% of the posterior on the probability of a recession is be-
tween 0.02 and 0.28. That is, the uncertainty regarding the recession probability
decreases substantially when taking into account business cycle-specific variances
in model 4. For model 5, 95% of the posterior on the probability of a recession
is between 0 and 0.01, but given its delay in calling recessions, the results from
model 4 are more reliable based on previous performance.13

When the models are re-estimated using data up to December 2007, the con-
clusion regarding the predictive ability of model 4 is reinforced. The probabilities
of recession from all the other models decrease substantially in November and
show only a slight increase in December (Figure 5). The probability of recession
from Model 5 is very close to zero. On the other hand, the probability of recession
from Model 4 increases substantially, giving stronger signals of a recession state
in December.14

5. Conclusions

This paper extends a standard probit specification for monitoring business cycles
to account for the possibility of single breakpoint or recurrent shifts and serially
correlated errors. A Gibbs sampling algorithm is used for estimating the effects
of breaks on the estimated probability of recession.

We find strong evidence of the existence of a break in the relationship be-
tween the monthly coincident series and the business cycle. However, the results
suggest considerable uncertainty about its exact location and gives support to
the assumption of recurrent breaks. This is confirmed by the Bayes factor and
the superior classification performance of models that allow for recurrent shifts
in the innovation variance. The recession probabilities for these models provide
a clearer classification of the business cycle into expansion and recession peri-
ods, and superior performance in the ability to correctly call recessions and to
avoid false recession signals in-sample. The results indicate the importance of
considering recurrent breaks for monitoring business cycles.

13The low probabilities of recession from models 4 and 5 are in agreement with Feldstein’s
statement that the economy was not in a recession in October or November 2007 (Feldstein,
December 2007)
14Note that the models examined do not have information on the probability of a recession

from December 2007 on, since they are devised to monitor current economic conditions as they
only use coincident (not leading) variables.
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Note that the models are devised to monitor current economic conditions
rather than forecast, as they only use coincident (not leading) variables. This on
its own carries a lot of uncertainty and it is an important task since the NBER
takes quite a while to announce the beginning or end of a recession after the
fact. In an on-going research we are studying ways to use these models for real-
time classification with limited information on the dating decisions of the NBER
business cycle committee.

Appendix

The formula required for the Gibbs sampler draws for models 4 and 5 is de-
rived below. The full conditional distribution under the first order autoregressive
assumption

f(Y ∗t |Y ∗T , . . . , Y ∗t+1, Y ∗t−1, . . . , Y ∗K+1)
is equivalent to:

f(Y ∗t |Y ∗t+1, Y ∗t−1).
Since Y ∗t+1, Y ∗t , Y ∗t−1 have a joint normal distribution, the conditional distribution
is normal. Under the assumption that all initial values are zero, we can write the
latent time series Y ∗t at time t as:

Y ∗t = Xt +
t−K−1

s=0

θsσ(t− s)εt−s.

Thus, the latent time series conditional on the coincident series is multivariate
normal with mean vector Xt+1,Xt,Xt−1 and variance matrix:

⎡⎢⎣ V (Yt+1) θV (Yt) θ2V (Yt−1)
θV (Yt) V (Yt) θV (Yt−)

θ2V (Yt−1) θV (Yt−1) V (Yt−1)

⎤⎥⎦ .
The results are then based on standard relationships between joint normals and
conditional normals.
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Table 1 - Posterior Mean Parameters across Models 
Parameters Model 1 Model 2 

t<1984:01     t≥ 1984:01 
Model 3 

τ <break      τ ≥ break 
Model 4 Model 5 

0β  -0.98 -0.56                  -1.69 -0.63                  -1.71 -0.67 -0.21 

IPβ  -0.64 -0.53                  -1.73 -0.45                  -1.58 -0.52 -0.43 

Saleβ  -0.17 -0.10                  -0.32 -0.15                  -0.23  -0.09 -0.37 

Incomeβ  -1.18 -0.94                  -2.16 -1.10                  -2.21 -0.89 -1.05 

Employmentβ  -0.93 -0.33                  -2.57 -0.71                  -1.89 -0.89 -0.89 

θ  - - - - 0.70 
Innovation 
Variance 

1 1 1 - - 

1961:3-1970:11 - - - 1.09 1.84 
1970:12-1975:3 - - - 0.54 0.63 
1975:4-1980:7 - - - 3.84 2.54 
1980:8-1982:11 - - - 0.23 0.54 
1982:12-1991:3 - - - 0.21 0.23 
1991:4-2001:11 - - - 0.15 0.19 
 
 

Table 2 – Classification Table: Predictive Ability to Signal Recessions and Expansions 
 Model 1 

tY =0 tY =1 Total 
Model 2 

tY =0 tY =1 Total 
Model 3 

tY =0 tY =1 Total 
Model 4 

tY =0 tY =1 Total 
Model 5 

tY =0 tY =1 Total 
P( tY =1) ≤0.5 494      58      552 488      49      537 491     45       536 501      24       525 500      13       513 
P( tY =1) >0.5 9          24        33 15         33       48 12       37         49  2         58         60    3      69         72 
Total 503      82      585 503      82      585 503      82       585 503      82       585 503     82        585 
Correct 494      24      518 488      33      521 491     37        528 501      58       559 500     69        569 
% Correct 98.2    29.3    88.5 97.0    40.2    89.1 97.6    45.1     90.3 99.6    70.7     95.6 99.4    84.1     97.3 
% Incorrect  1.8     70.7    11.4  3.0     59.8    10.9  2.4     54.9      9.7  0.4     29.3      4.4 0.6      15.8      2.7 
Total Gain  -1.8    29.3     2.6 -3.0    40.2      3.1 -2.4    45.1       4.3 -0.4    70.7      9.6 -0.6     84.1    11.3 
% Gain    -      29.3    18.3    -      40.2     22.0    -      45.1     30.5    -      70.7     68.3   -        84.4    80.5 
 

 Naïve Model 
tY =0    tY =1    Total 

P( tY =1) ≤0.5 503         82         585 
P( tY =1) >0.5 0              0            0 
Total 503         82         585 
Correct 503          0          503 
% Correct 100          0          86.0 
% Incorrect 0            100        14.0 

 
________________________________________________________________________________________ 
(*) The Total and % Gain is over the Naïve Model. 
Recall that tY =0 for expansions and tY =1 for recessions. For example, model 1 correctly signals 24 out 82 
recession observations for a probability cutoff of 50% P( tY =1) >0.5). 



 23

Table 3 – Peak Signals of NBER Recessions 
______________________________________________________________________________________________ 

 Peaks NBER Model 1 Model 2 Model 3 Model 4 Model 5 
______________________________________________________________________________________________ 

 1960:04 +1 +1 +1 +1 -3 
 1969:12 -2 -2 -2 -2 -2 
 1973:11 -3 +2 +2 -2 -3 
 1980:01 -3 -3 -3 -2 -4 
 1981:07 -5 -3 -3 -3 -3 
 1990:07 -3 -3 -3 -2 -4 
 2001:03 -2 -2 -2 -1 -2 

______________________________________________________________________________________________ 
(*) The criterion adopted to determine turning points is if the probability of recession is greater than 
50%, P( tY =1) >0.5). 
(**) Leads are represented by (+) and lags by (-).  For example, model 5 indicates the beginning of the 
 2001 recession with a lag of two months. 
 

  
    Table  4 – Yates’ Decomposition 

_________________________________________________________________________________________________ 
  MSE Var (x) ΔVar (f) Min Var (f) (μf - μx)2 2*cov (f, x) 

        __________________________________________________________________________________________________ 
 Model 1 0.08410 0.12073 0.03398 0.00318 0.00001 0.07380
 Model 2 0.08011 0.12073 0.04504 0.00660 0.00000 0.09226
 Model 3 0.07820 0.12073 0.04380 0.00652 0.00013 0.09298
 Model 4 0.05543 0.12073 0.05258 0.01643 0.00042 0.13474
 Model 5 0.07075 0.12073 0.08329 0.04643 0.00027 0.17997

  _________________________________________________________________________________________________ 
      Yates’ decomposition is: MSE = Var (x)+ Δ Var (f) + Min Var(f)+ (μf - μ x)2- 2Cov (f,x), where x  
        is the NBER dummy, f is the prediction from the model, var is the variance, μ is  the mean, 
        cov is the covariance,  Min Var(f) =  (μf|x-1 - μ f|x=0)2 Var (x), and Δ Var (f) = Var(f) - Min Var(f). 
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Figure 1 – Posterior Distribution of Probability of a Breakpoint From Model 3 
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Figure 2 – Posterior Mean Probabilities of Recession for the Full Sample and NBER-Dating 
(Shaded Area)   
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Figure 3 – Posterior Mean Probabilities of Recession for the Last Two Decades and NBER 
Dated Recessions (Shaded Area) 
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Figure 4 – Posterior Cumulative Distribution Function of the Probability of Recession in October 2007 
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Figure 5 – Posterior Mean Probabilities of Recession: 2007:01 to 2007:12 
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