
to grow just a spinal segment or
two could translate into dramatic
quality-of-life improvements. For
instance, short-distance
restoration of spinal circuitry
could allow patients with cervical
injuries to breathe independently
without a respirator, or those who
have sustained lumbar injuries to
increase mobility and regain
bowel and bladder function. The
field of CNS regeneration is alive
and bursting with potential; the
next decade holds the promise of
exciting progress.
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Requirement for
high-level
processing in
subliminal
learning

Aaron Seitz1, Christine Lefebvre2,
Takeo Watanabe1 and 
Pierre Jolicoeur2

We are constantly learning new
things as we go about our lives,
and refining our sensory abilities.
How and when these sensory
modifications take place is the
focus of intense study and we
report here that even subliminal
learning, which occurs without
awareness of what is learned,
requires high-level processing.

Some researchers have
proposed that sensory plasticity
can only take place on features a
person attends to [1,2], but others
have shown sensory
improvements can occur for
unattended features [3,4]. In the
latter case, subliminal motion
vectors were learned when they
were temporally correlated with
the targets of the subject’s task
[3]. This led to the view that
successful recognition of the task-
targets triggers a diffuse learning
signal that enables learning of
features temporally correlated
with the task-targets. We have
directly tested this proposition to
ascertain what level of processing
is required for this subliminal
learning.

We used the attentional blink
paradigm [5]: an imbalance in
identification accuracy of two
masked targets presented in rapid
succession; the first target is seen
but the second not. The
attentional blink is mostly studied
within the context of a rapid serial
visual presentation (RSVP). For
example, in our experiment,
participants were trained on the
identification of two target digits
(T1, T2) presented within a series
of distractor letters (Figure 1).
Each stimulus is presented for
100 ms, and subjects must hold



their response until the end of the
15–20 character sequence. When
a short stimulus onset asynchrony
(SOA) of 200 ms separates the
two targets, the second target (T2)
is less likely to be reported
correctly than when 800 ms
separates the two targets. This
difference is called the attentional
blink effect (Figure 2); it is very
robust and has been shown in
hundreds of experiments [6].

The attentional blink is believed
to reflect the processing capacity
limitation of our high-level
processing-stages [7–8]. While

certain high-level systems suffer
from this ‘processing-bottleneck’
and cannot perform multiple
functions concurrently, other
lower-level processing stages do
not have the same limitations
[9,10]. For instance, perceptual
and semantical processing for the
‘blinked’ target has been verified
through behavioral [10] and
electrophysiological [9] measures.
The fact that the semantic identity
of the ‘blinked’ target is
determined, but still goes
unreported, suggests the
attentional blink is caused by a
failure of memory. Other lines of
evidence indicate that the
processing bottleneck is central
to multiple high-level processes,
including short-term memory
consolidation, response selection
and other decision processes
[8,11].

Whether subliminal learning
takes place during the attentional
blink is an important clue to the
level of processing required for
learning. If learning occurs during
the blink, it would indicate that
perceptual processing and target
recognition are sufficient for
learning; but if no learning occurs
during the blink, it would indicate
that a high level of processing, at
or beyond the level of the
bottleneck, is required.

To test this we designed a
subliminal learning experiment in
which each subject was
‘subliminally trained’ on two
different directions of motion: one
presented within the window of
the attentional blink and the other
outside the blink window. We

presented irrelevant, unattended
moving dots, with 5% motion
direction coherence, peripherally
while subjects conducted the
RSVP task. In trials when a short
SOA separated the two targets
(AB condition), a particular
direction of motion was
temporally paired with T2. When
the SOA was long (NoAB
condition) a different direction of
motion was temporally paired with
T2. A control set of directions was
presented with distractor letters
and the motion stream
commenced after occurrence of
T1 so that no direction was paired
with T1. Participants were tested
on a motion identification task
before and after 10 days of
training with the dual target RSVP
task.

The results support the view
that a high level of processing of
T2 is required for subliminal
learning on the direction paired
with T2. In the NoAB condition a
clear effect of learning was
observed for the direction paired
with T2 (Figure 3A). This can be
seen by comparing the
psychometric contrast response
curves on the first and last day of
testing. A three-way ANOVA
shows a significant interaction
between day of testing and
direction (F(1,6) = 8, MSE = 0.01
p < 0.05). Decomposition of this
interaction shows performances
are significantly higher after (63%
correct) than before (51% correct)
training in the NoAB condition,
(F(1,6) = 45.48, MSE = 0.00,
p < 0.001) These results accord
with previous studies of task-
irrelevant learning [3,4] and show
that the subjects are capable of
learning under these conditions.
But no learning (55% vs 51%;
p = 0.32) was found for the
direction paired in the AB
condition (Figure 2B). 

These results suggest there is a
high-level gating mechanism for
learning that is affected by the
attentional blink. A difficulty for
this view is that attentional
processing of the first target
resulted in impeded stimulus
processing of the AB direction. In
this scenario, a learning signal
could be released during the AB,
but learning would fail due to the
impoverished processing of the
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Figure 1. Attentional blink
training task.

In the RSVP task, a series of
15–20 characters were pre-
sented in rapid succession
with a stimulus onset asyn-
chrony (SOA) of 100 ms
between letters. In the AB
condition (top), a single
intervening distractor (D)
was presented between T1
and T2, producing a T1–T2
SOA of 200 ms. In the
NoAB condition (bottom),
seven intervening distrac-

tors (D1-7) were presented between T1 and T2, producing a T1–T2 SOA of 800 ms. On
each trial, a random sequence of five dot patterns (arrows) with 5% coherent motion
commenced with a SOA of 150 ms from T1 onset, with each direction presented for
200 ms thereafter. For each subject, two different directions (white arrows) were ran-
domly assigned to be paired with T2.
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Figure 2. The attentional blink.

(A) Performance on T2 when T1 is
correct, on lag 2 and lag 8, averaged
over all participants and all sessions. The
difference in performance between lag 8
and lag 2 is labeled blink magnitude. (B)
Average magnitude of blink on each day
of training (accuracy at 800 ms SOA
minus accuracy at 200 ms SOA). The
error bars represent standard error.
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AB direction compared to the
NoAB direction. To control for this
possibility we introduced a control
task, using a new set of subjects,
to test if there was a reduced
ability of subjects to report the AB
direction. Subjects were required
to give an immediate report of the
motion direction paired with T2.
The stimulus sequence and task
constraints, until motion offset, of
this control were identical to the
main task, so any differences in
stimulus processing between the
AB and NoAB directions should
be revealed as performance
differences in motion direction
identification. Task performance
at 5% coherence (used for
training) was poor both for the AB
and NoAB conditions but
surprisingly was slightly, but
significantly, better for the AB
direction (NoAB = 15.6 ± 4.4 vs
AB = 22.9 ± 5.8; p < 0.01 t test).
While this result is opposite to
that predicted by the low-level
hypothesis, it was not unexpected
as the NoAB direction is later in
the motion stream and is likely
subject to forward masking. This
rules out all possible confounds of

a low-level stimulus processing
deficit during the blink.

Although it had been
hypothesized that successful
recognition of a task-target leads
to the release of a diffuse learning
signal, resulting in learning for
those features temporally
correlated with that target [3],
until now we lacked a framework
by which to identify the
requirements for this signal to be
released. We have shown the
bottleneck believed to be
responsible for the attentional
blink encompasses processes
critical for perceptual learning.
We suggest that a high level
processing stage limited by the
attentional blink gates the release
of a non spatially or featurally
specific learning signal. This
signal effects learning of low-level
stimulus features.

Our results have potentially
important implications for other
types of learning and attentional
processes. They help reconcile
results of subliminal learning with
attentional learning theories.
Subliminal learning may involve
attentional processing, but
attention does not need to be
directed to a feature for that
feature to be learned. This is
consistent with data indicating
that attention involves multiple,
but distinct, subsystems [12,13]
and findings that an array of
different processes are limited by
the blink [11]. While some of these
attentional systems are featurally
specific, others are not and may
account for subliminal learning
[14]. This unification of these two
lines of research is an important
step toward increasing our
understanding of the mechanisms
that underlie our ability to direct
attention to important
environmental factors and to learn
from them.
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Figure 3. Performance of seven subjects
on direction discrimination task before
(dotted lines) and after (continuous
lines) subliminal training.

(A) For the motion direction paired with
T2 of the NoAB condition, improved per-
formance after training is observed
across all levels of tested motion coher-
ence. (B) For the motion direction paired
with T2 of the AB condition, no clear per-
formance change was observed. The
bars represent standard errors.
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Supplemental Experimental Procedures 

Participants 

 Seven undergraduate students from Université de Montréal participated in the 

experimental task, and ten others completed the control task. They all had normal or 

corrected-to-normal vision. Each participant in the experimental condition received $120 

CAN as a compensation upon completion of the 14 testing sessions, while the control 

task participants received $8 as a compensation for their one hour session. Mean age was 

23 years old in the experimental condition and 22 in the control condition.  

Apparatus 

 The experiment was run on a Power Macintosh G3 computer equipped with a 16” 

Macintosh screen, set at a 1024 X 768 resolution and a refresh rate of 75Hz. Participants 

were seated alone in a dimly lit experimental cubicle, 90cm from the computer screen.  

Stimuli 

 Motion was created by using a Newsome type algorithm with white dots. In the 

direction identification, attentional blink (AB) training task and control task, moving dots 

were presented within an annulus subtending a 1o - 13o visual angle. The background was 

black, except for a central 1 o light-grey disk. This disk remained empty during the 

direction identification task. In the AB training task and the control task, capital letters 

and digits were presented in dark grey Monaco font at the center of the light grey disk. 

Those stimuli subtended .2o (width) by .3o of visual angle.  



Procedure 

Direction identification task Performance in the direction identification task was 

assessed before, during and after training in the AB task. Participants completed two 

sessions before the start of the AB training task, one session halfway through and one 

final session after all 10 AB training sessions were completed. Results from the second 

and final motion direction sessions are reported in our analysis (The first session was 

used to acquaint subjects with the task and as a result there were typically large baseline 

changes between the first and second session). Each of 6 directions of motion (10, 70, 

130, 190, 250, and 310 degrees), and 5 levels of motion coherence (0, 5, 15, 25, and 

50%). were randomly interleaved including 40 trials per condition for a total of 1200 

trials per session.  

AB training task For each trial, a stream of letters appeared at a rate of 10 per second at 

the center of the light-grey disk. Four of the participants searched for the two digits 

(either “1,” “2,” “3,” or “4”) embedded in the letter stream. The three other participants 

had to identify which two of a set of target letters (“W,” “X,” “Y,” or “Z “) was presented 

in the stream. This change to a report of letters in the task was introduced in order to 

obtain a larger blink, since the blink tended to decrease with practice for some 

participants. The lag between the two targets was either 2 (AB condition) or 8 (NoAB 

condition). Fifty ms after presentation of the first target, the 5% coherent motion stream 

was initiated in the 1o -13o annulus. Every 200ms, the direction of motion coherence 

changed. A specific direction, different for every subject, was paired with T2 in each lag 

condition such that each subject had one direction of motion paired with the AB 

condition and a second direction of motion paired with the NoAB condition. Other 



motion directions were paired randomly with the distractors such that in total each 

subject was equally exposed to 6 different directions of motion. There were 300 trials in 

each lag condition, for a total of 600 trials per session and 6,000 trials across the entire 10 

sessions of training. 

Control task In the control task, participants were exposed to the same letter/motion 

stream as in the AB task, in which two of the letters W, X, Y, and Z were presented. 

However, the proportion of coherent motion was varied from trial to trial. Motion could 

be 0, 5, 15, 25, or 50% coherent, like in the motion direction task. In each trial, motion 

stopped after the frame corresponding to a lag of two or a lag of eight. Participants were 

instructed to report the direction of the last motion frame, and then the first target. The 

second target was ignored in all trials. Each participant in the control task completed one 

session that comprised 300m trials in each condition, for a total of 600 trials.  
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