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This paper is the first in a two-part series in which we discuss several notions of completeness for systems of

mathematical axioms, with special focus on their interrelations and historical origins in the developroent of

the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an
appropriate framework for considering such notions, and we consider some open questions in higher-order
axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics so as to
shed new light on the refevant strengths and limits of higher-order logic.

. 1. Introduction

One of the guiding tasks of twentieth-century mathematics and logic was that of
axiomatizing mathematical concepls and even whole fields. This was part of the
trend toward increasing systematization and abstraction in modern mathematics.
Accordingly, the various possible notions of completeness of a systemn of axioms
have taken on considerable interest, and their development in the late nineteenth
and early twentieth century now calls for a historical review. This is true for
completeness understood as a property of logical calculi,' but also for the quite
different notion, or notions, of completeness as applying to axjomatic
characterizations in mathematics generally, including the notion of categoricity.” In
addition, recently several new technical results bearing on these issues have
appeared, while there also remain some open questions of a quite basic kind.

This paper is the first in a two-part series in which we address these issues
systematically and comprehensively.” We start by documenting how the notion
of categoricity and several related notions of completeness for axiomatic
systems were first conceptualized. This occurred in connection with the
development of the axiomatic method in late nineteenth- and carly twentieth-
century mathematics, in the works of, among others, Richard Dedekind,
Giuseppe Peano, David Hilbert, Edward Huntington and Oswald Veblen. After

i For recent discussions of the history of completeness as a property of logical calouli, see Read 1997, Sieg
1999, and Zach 1999, earlier also Goldfarb 1979, Moore 1980, Dreber: and Heifenoort 1986 and Moore
1988. :

2 This topic has, in general, been discussed much less in the recent literature; as exceptions, see Corcoran
1980, Corcorar 1981 and again Read 1997. In the present paper we are, among other things, answering
sore guestions raised in Corcoran 1981. ] '

3 The second part is Awodey and Reck 2002, referred to hereafter as “the sequel’.
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the subsequent systematic development of formal logic there followed various
logical and metamathematical investigations, cxemplified by the well-known
results of Kurt Godel, Alfred Tarski and others from the 1930s. Two further
thinkers who contributed to these carly metatheoretic investigations, and some
of whose contributions predated those of Gadel and Tarski, are Abraham
Eraenkel and Rudolf Carnap. Moreover, it is in Fraenkel's and Carnap’s works
from the 1920s that the most explicit, systematic discussions of different
notions of completeness can be found, as we also document.*

As will become evident, the now standard restriction to first-order logic in
connection with notions such as categoricity and completeness conflicts with the
way in which these concepts were initially investigated in the works of Hilbert,
Carnap, Gédel, Tarski and others. From 2 historical point of view such a
restriction is, thus, unwarranted and potentially misleading. It is also ill-advised
from a technical point of view, insofar as some aspecis of these issues are more
naturally and fruitfully addressed in higher-order logic, as we wilt ilustrate in the
sequel to this paper. Beyond expanding the logical framework to that of higher-
order logic, we also take a wider view of semantics than is customary in
contemporary metalogic and metamathernatics. Namely, we extend the range of
semantic notions from the standard, set-theoretic ones to more general topological
and category-theoretic semantics. This might seems even more radical than the move
to higher-order logic, but we believe it is justified by the light it sheds on some
topics that have previously been obscure. Thus it will allow us to establish some
strengthenings of earlier results along lines hardly foreseeable by Carnap or Tarski,
but not incompatible with their point of view.

2. Notions of completeness

Both for historical and logical purposes, it will be useful to start with an explicit
distinction between several different notions of completeness. Assume in this
connection that a formal language £ is given, including the specification of the
logical constructions allowed in the sentences of £, e.g. propositional operations,
quantification, higher types, etc. Assume also that notions of formal deduction and
deductive consequence, on the one hand, and of interpretation, satisfaction, model
and semantic consequence, on the other, have been introduced in the usual way.
This allows us to consider, in a mathematically precise way, whether a sentence @ is
deducible from a set of sentences [ (written I' & ¢, also expressed by saying that I’
yields @Y; whether some structure M satisfies a sentence ¢ (written M |= @} whether
M is a model of T {in the sense of satisfying all the sentences in T'); and finally,
whether I” semantically #mplies @ (written T = ¢, and meaning that all models M of
I” satisfy ).

Given such a syntax and semantics for £ we can formulate the following
definitions.

Definition 1. The deductive conseguence relation i is called complere relative to the
semantic consequence relation s if for all sentences ¢ and all sets of sentences T of

LD =g thanT e

4 The interesting role played by Carnap in this connection was astablished in Awodey and Carus 2001,
The present paper can be seen as a continuation of one topic discussed there.
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Put informally, a deductive system is complete if it is “strong enough’ for the
corresponding semantics in the semse that it yields all the semantic
consequences also as deductive consequences. As is well known, the standard
deductive consequence refations for propositional and first-order logic are
complete in this sense relative to conventional truth-value and set-theoretic
semantics.” In contrast, no deductive consequence relation, in the usual sense,
for second- or higher-order logic can be complete relative to standard set-
theoretic semantics.®

Quite distinct but equally important are several notions of completeness for
mathematical theories T. Logicians today are accustomed to talking about a
‘theory’ in three refated senses: as a set of axioms (perhaps finite or recursively
enumerable) formulated in terms of the primitive notions of some language £
{the traditional mathematical noticn of ‘axiomatic theory’); as the closure in £
of a given set of sentences under either deductive or semantic consequence (the
now-standard logical notion of ‘theory’); and as the set of all the sentences of
£ satisfied in some particular structure M (the ‘theory of M’). In the historical
examples beiow, it is theories in the first of these senses—given by finitely
many axioms—that are at issue. But the following definitions apply to all three
kinds of theories. :

Definition 2. A theory T is called categorical (relative to a given semantics) if for all
models M, N of T, there exists an isomorphism between M and N,

Informally, the idea here is that T has “essentially only one modal’. Familiar, examples
are second-order Peano arithmetic, with the usual second-order induction axiom, and
the second-order theory of a complete ordered field. In contrast, their usual first-order
versions are not categorical.”

Two further familiar notions of completeness for a theory T are captured in the
next two definitions. In them we will use the terms ‘semantically complete’ and
‘deductively complete’ (later also ‘relatively complete’ and ‘ogically complete’} in
ways that are not altogether standard. The reason for our choices will hopefully
become evident.

Deﬁnition 3. A theory Tis called semamic.ally complete (telative to a given semantics}
if any of the following equivalent conditions holds:

(1) For ali sentences ¢ and all models M, N of T, if M = ¢ then N | .

{2) For all sentences @, either Tk gorTRE-¢ :

(3) For all sentences g, sither T k= @ or T U {g} is not satisfiable.

{(4) There is no sentence ¢ such that both TU {9} and T U {— ¢} are satisfizble.

Infqrmally, t:hc idea in (1) is that ail models of the theory are ‘logically
ec;unrah‘.n:uz’3 in the sense thal exactly the same sentences are satisfied by all
of them (in the first-order case: elementarily equivalent). The idea in (2) is

5 Secthe co’m_pleteness theorems first obtaingd in Bernays 1918, Post 1921, G&del 1930 and Henkin 1950,

6 By Gédel’s incompleteness theorem: see Gddel 1931, By ‘stendard set-theoretic semantics’ we mean to
exclude Henkin models.

7 For a discussion of categoticity in connection with examples related to Peano arithmetic, compare
Corcoran et af. 1974,
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that every sentence of the language is “semantically determined’ by T, to that
either it or its negation is a semantic consequence of T (fertien non darur).
Both second-order Peano arithmetic and the second-order theory of a
complete ordered field are semantically complete, while their usual first-order
versions are nof. Tarski’s theory of real arithmetic (the first-order theory for
real closed fields) is semantically complete, but unlike the previous examples
it is not categorical®
- Turning now to the deductive or syntactic side.

Definition 4. A theory T 13 called deductively complete {reiative to a given deductive
consequencs relation ) if any of the following equivalent conditions holds:

(1) For all sentences @, either T or Th - g,
(2) For all sentences @, either T+ @ or T U {g} is inconsistent.
(3) There is no sentence @ such that both T U {p} T U {— ¢} are consistent.”

Informally, the idea in (1) is that every sentence of £ is ‘deductively determined’ by T,
in the sense that either it or its negation is a deductive consequence of T (fertium non
datur). Neither first- nor second-order Peano arithmetic is deductively complete;
fikewise for the first- and second-order theories of a complete ordered field. On the
other hand, Tarski’s theory of real arithmetic provides an example that is not only
semantically, but also deductively complete.

Clearly Definitions 4(1)-4(3) are the deductive analogues of 3(2)-3(4). It is also
not hard to see that Definitions 4 and 3 are equivalent against the background of
any logical system in which the deductive consequence refation is (sound and)
complete in the sense of Definition I, such as in the case of first-order logic.
On the other hand, this is not troe in general, as the second-order examples
above illustrate. Note, in addition, that each of the notions introduced in
Definitions 2, 3, and 4 is relative in a certain way: categoricity and semantic
completeness to a corresponding semanfics, and deductive complefeness to a
corresponding deductive system. ’

For historical purposes it will be useful to add two further, less familiar notions of
completeness for a theory T

?)eﬁnition 5. Let .S be a set of sentences in the language £ and let T he a theoryin £. T
is called relatively complete (relative to 8) if every sentence ¢ € § is probable from T.

One can consider both informal and formal versions of this notion, relying on either
an informal mathematical notion of proof or on provability as tied to some formal
deductive system. Later we will encounter several historical examples illustrating
this notion. To anticipate, in them 5 will be the theorems of a certain field at a
particular point in time, e.g. those of Euclidean geometry around 1900, and T will
be a then-new set of axioms, such as Hilbert’s.'®

Finally, if we let S={p : T |= @} in the previous definition.

8 Tarski 1951, compare also the discussion in van den Dries 1988.

9 By ‘consistent’ and ‘inconsistent’ we aiways mean deductively consistent and deductively inconsistent.
Instead of ‘semanticaily consistent’ we use ‘satisfiable’ {as above).

i} The historical impeortance of relative completeness, especially in connection with Hilbert, was pointed
out to us by Wilfried Siez. He calls it ‘quasi-empirical completeness’.
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Definition 6. A theory T is called logically complete (telative to a given semantics} if
for all sentences @, if T k= ¢ then ¢ is provable from T.

One can again consider both informal and formal versions of this notion, depending
on whether one works with informal mathematical proofs or with proofs in a formal
deductive system. Note that if we work with the latter, we are back to a case of
completeness of the deductive consequence relation in the sense of Definition 1,
namely where the parameter I is replaced by a particular theory 1. By way of
gxample, even though higher-order deduction is not complete in the sense of
Definition 1, it is not hard to find a specific theory in higher-order logic that is
logically compiete in the sense of Definition 6, ¢.g. that of the notion of a set of
some particular finite cardinality.

We consider next how these notions of completeness arose historically, namely in
connection with the development of the axiomatic method in Jate nineteenth and early
twentieth century mathematics.

3. Formal axiomatics

The use of the aziomatic method in mathematics goes back at least as far as
Euclid’s Elements, thus to around 300 BC. Traditionally, axiomatics was a
method for organizing the concepts and propositions of an existent science in
order to increase cerfainty in the propositions and clarity in the concepts.
However, we are imterested in a characteristically modern refinement of it,
what is now often called formal axiomatics, earlier also poswlate theory. In
formal axiomatics the purpose is not primarily to increase certainly, nor js it
merely to clarify and orgamize the concepts and theorems of a mathematical
discipline in a systematic way. Rather, an additional aim is to treat the
objects of mathematical investigation more abstractly, and then to characterize
thern completely—to “define them implicitly’, as it is often put somewhat
misleadingly. " :

Of course, the axiomatic method, has aiso been applied very successfully in cases
where such ‘completeness’ of the axioms is not required, or even desirable, e.g. in the
case of groups or topological spaces. In such cases it is not a matter of characterizing
one particular mathematical structure, but of studying various different, non-
isomorphic, systems alt satisfying certain general constraints. In general, notions of
completeness arise M contexts where axiomatizations are being undertaken with
specific goals in mind. To say that an axjomatization is complete is, then, to say
that the axjomatizers have achieved their goal, in -particular that no further
addition of ‘new axioms’ is called for.

In its mature mathematical form, formal axiomatics involves using a formal
language, a language that is taken to be uninterpreted and for whick various
different interpretations can be considered and compared. Ideally, at least in
principle, formal axiomatics also requires making explicit which iogical inferences
between sentences of the language are permitted. This is usually done by specifying
a formal deductive system that makes reference only to the formal language and not
its various interpretations.

11 Compare Corcoran 1995 for the general goals of axiomatics. The name formal axiomatics’ as well as an
influential endorsement of it go back to Hilbert and Bernays 1934, 2.



G Steve Awodey and Erich H. Reck

We will now consider five historical examples of formal axiomatics which, in our
view, represent the steps most relevant in its development. These examples are closely
finked to each other, as will also become apparent.

3.1. Dedekind and Peano on the natural munbers

An important precursor, to some degree also a first example, of formal axiomatics
in the sense just described is the treatment of the natural numbers and of elementary
arithmetic in Richard Dedekind’s ‘Was sind und was sollen die Zahlen? from 1888."
In this classic essay Dedekind’s goal is to put the theory of natural numbers on a new,
uniform and ‘logical’ foundation, What that goal amounts to is explained in a well-
known letter to the mathematician Keferstein, from 1890:

What are the mutually independent fundamental properties of the sequence N,
that is, those properties that are not derivable from one another but from which
all others follow? And how should we divest these properties of their specifically
arithmetic character so that they are subsumed under more general notions and
under activities of the understanding withou: which no thinking is possible at
all, but with which a foundation is provided for the reliability and completeness
of proofs and for the construction of consistent notions and definitions?!?

Note here Dedekind’s emphasis on ‘completeness of proofs”. This phrase reflects his
goal to avoid any implicit, hidden assumptions in his proofs, thus to make explicit
everything that is (and is not} relevant in the mathematical concepts involved. It
also echoes the opening line of the Preface (first edition) to *Was sind und was sollen
die Zahlen?, where Dedekind affirms: *In science nothing capable of proof ought to
be accepted without proof”."*

The ‘more general notions’ Dedekind wants to use in giving a foundation to
arithmetic are those of an informal theory of functions and sets; the latter he calls
‘systerns’. On their basis he proceeds to introduce various general conditions, or
concepts, that such systems. may satisfy. The central concept is that of a “simply
infinite system’. In current terminology, its definition is this. ' ’

Definition 7. A set S is said to be simply infinite if there exists a function fon S and an
element @ € § such that the following hold:

() A8 < §, le fmaps §into itself.

(2) a¢f(S), Le aisnotin the image of S under £ _

(3) fxy=#0>) implies x=y, Le. fis a 1-1 function [Dedekind: fis similor].

(4 Sis the smallest set containing o and closed under /, i.e., it is the intersection of all
such sets [Dedekind: S is the chain under f with base point a.

1t is not hard to recognize what are now called the ‘Peano Axioms’ {or ‘Dedekind-
Peano Axioms’} for the natural numbers in Dedekind’s definition. A contemporary

12 Dedekind 1888.

13 Dedekind 1890, 95-100. We are grateful to George Weaver for drawing this passage to our aitention.

14 Dedekind 1963, 31, In general, we use standard English translations of German texts in: this paper, but
occasionally we amend thens.

15 Dedekind 1963, Definition 7%. I the following passage we have ot only amended the translation, but
also updated the terminology and changed the order of Dedekind’s four clauses.
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logical formulation—not much different from the original one in Giuseppe Peano’s
Arithmetices Principia, Nova Methodo Exposita of 1889%—is as follows: Taking N
to be a set, 5 a function defined on N, and 1 € V:

(I} ¥x(xe N - s{x} €N}

2y Vx{xeN—=1+# s(xp

(3 Yx¥y sx)=s@)ox=y)

@ YX(leXAVp(peX-3(peX)) - Ng X

Note that this formulation uses second-order logic insofar as the induction axiom (4)
unses a quantifier ¥X over afl sets. This corresponds to Dedekind’s informal version
which involves guantification over sets implicitly, but crucially in his clause (4).

Unlike Peano, Dedekind does not talk about ‘axioms’ in his essay. Instead, he
simply works with the concept of being a ‘simply infinite system’ as defined above.
He then introduced (as the result of a process of *abstraction’) a particuiar simply
infinite system N, with ‘base element’ | and ‘set in order” by ¢, which he calls “the
natural numbers’.!” After that, he proves a number of corresponding results,
including the following two:

Theorem 132: All simply infinite systems are simifar {i.. isomorphic] to the number
series N and consequently { ... ] also to one another.

Theorem 133: Every system which is similar to a simply infinite system and
therefore { ... ] to the number series & is simply infinite. 8

Dedekind does not yet work with a completely general notion of isemorphism, nor does
he use the term ‘categorical’. Nevertheless, these two theorems (and théir proofs) show
that he basically knows his characterization to be categorical. He then adds:

Remark 134: It is clear that} every theorem regarding numbers, i.e. regarding the
elements # of the simply infinite system N set in order by the mapping ¢, and
indeed every theorem in which we leave entircly out of consideration the special
character of the clements » and discuss only such notions as arise from the
arrangement of ¢, possesses perfectly general validity for every other simply
infinite system S set in order by a mapping ¥ and its elements 5 [...1°

The following related aspects of this remark are crucial for our purposes: first,
Dedekind alse realizes the semantic completeness of his axiomatization, essentiaily
in the sense of our Definition 3(1) above.” Morsover, he apparently infers this

16 Peano 1889, translated as Peano 1973. Besides minor variations in the notation, Peano’s version differs
ontly insofar as he includes axioms for equality as weil, ’

17 Peano 1973, Definition 73. For our purposes it does not matter how exactly Dedekind thinks about N,
only that it is a particular simply infinite system. Compare Tait 1997 and Reck 2003 for further
discussions of Dedekind’s approach, especially of his notion of ‘abstraction’.

18 Dedekind 1963, 92 and 93, respectively,

19 Dedekind 1963, 95. '

20 Strictly speaking, semantic completeness involves the notion of semantic consequence, and that notion
was not given an explicit, mathematically precise articulation until the work of Tarski in the 1930s and
19405, perhaps even as late as the 1950s; see Hodges 1986. Nevertheless, Remark 134 makes clear that
Dedekind had working knowledge of the notion later explicated by semantic completeness,
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completeness directly from categoricity. At the same time, he presents these insights
merely in the form of a ‘remark’, not a ‘theoreny’, and he does not provide a proof.
Indeed, giving such a proof would have required a more developed theory of
logical syntax than he had at his disposal. Strictly speaking, Dedekind does not
even work with the notion of a formal, uninterpreted language and corresponding
interpretations for it. Instead he talks about “translating’ between the language for
N and those for other simple infinities Q.7

" After having essentially arrived at both categoricity and semantic completeness, in
the rest of his essay Dedekind goes on to establish and provide the following: the
general possibility of giving inductive definitions and proofs in arithmetic; specific
inductive definitions for addition, multiplication, and exponentiation; proofs of the
corresponding commutative, associative and distributive laws; and a clarification of
how 1o apply the natural numbess, as defined by him, to measuse the cardinality of
finite sets. What he establishes thereby, implicitly, is the relative completeness of his
axioms in the sense of our Definition 5, here with respect to the usual, basic results
in the arithmetic of natural numbers.

Finally, the overall structure of ‘Was sind und was sollen die Zaklen? shows that
Dedekind considers both the categoricity {derivatively also the semantic
completeness) and the relative completeness of his characterization as conditions of
adequacy for a systematic approach such as his. It is in these respects, or to that
extent, that his work on the natural numbers should be counted as an early
example of formal axiomatics. In other respects, however, his approach may be
seen to be more ‘conceptual’ than ‘formal’, in particular insofar as he still lacks the
notion of a formal language in the strict sense. And he is certainly a long way from
a system of formal deduction that would allow the consideration of deductive
completeness in the sense of our Definition 4.7

3.2, Hilbert on Euclidean space

Probably the most influential early example of formal axiomatics was David
Hilbert’s Grundlagen der Geomerrie, first published in 1899.%% In fact, it was this
text that established the fruitfulness of such an approach in the mathematical
community at large. Grundlagen starts as follows:

Geometry, like arithmetic, requires only a few and simple principles for its logical
development. These principles are called the axioms of geometry,?*

Of course, geometry had been axiomatized since the time of Buclid, as Hilbert
immediately acknowledges, What is distinctive about his own approach is that it is
self-consciously more abstract and ‘formal’ than earlier ones. This does not mean
that Hilbert has no intended interpretation or model for it in mind; in particular,

2t This last point is emphasized in Corcosan 1981, At the same time, Dedekind clearly intends various
different systems to fall under the concept “simply infinite system’. He even considers systems that
satisfy only some of the four clauses in it-but not others; see Dedekind 1890, 1G0-101.

22 Frepe's Begriffsschrift from 1879 could have provided some of the required notions and technical tools
for Dedekind. But by his own account, Dedekind was unfamiliar with Frege’s work at the time of
writing ‘Was sind und was sollen die Zahlen?'; compare the prefaces to the first and second edition of
Dedelkind 1963.

23 We will use Hilbert 1971, with corrections, but we will also have oceasion o go back to Hilbert 1903,
Hitbert 1902 and even Hilbert 1899.

24 Hiibert 1971, 2, original emphasis.
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he indicates that his choice of axioms is guided by a *logical analysis of cur perception
of space’ (Hilbert 1971). What it meaus, instead, is that a central new method used by
him is to consider a broad range of different interpretations, not only for his axiomatic
systern as 2 whole, but also for various parts of it (primarily to establish independence
results). That is to say, Hilbert in effect treats the language of geometry as a formal
language.”® Along these lines, chapter one of Grundlagen starts with the following
abstract description of its subject matter:

Definition: Consider three distinct sets of objects. Let the objects of the first set be
cafled poines and denoted 4, 8, C, ... ; let the obijects of the second set be called
lines and be denoted a, b, ¢, ... ; let the objects of the third set be called planes and
be denoted «, f, y, ... 1 ...] The points, lines, and planes are considered to have
certain mutual relations, denoted by words like “lie”, “between”, “congruent”.
The precise and mathematicaily complete description of these relations follows

from the axioms of geometry.®®

Besides setting the stage for Hilbert’s more ‘formal’ approach, what is of greatest
interest for us in the passage just quoted is his phrase ‘complete description’. This
phrase is, in fact, an echo of what Hilbert writes already in the Introduction of the
work, where he states his goals as follows:

This present investigation is a new attempt to establish for geometry a complete,
and as simple as possible, set of axioms and to deducs from them the most
important geometric theorems in such a way that the meaning of the various
groups of axioms, as well as the significance of the conclusions that can be
drawn from the individual axioms, come to light.”’

Throughout Grundlagen, Hilbert does not elaborate much on what he means by
‘completeness’ in passages such as these. It is clear from the above, however, that
he takes 1o be one of his primary goals what we have called relative completeness
(in the informal sense), namely with respect to ‘the most important geometric
theorems’ recognized by the mathematicians of his time.

To determine further what Hilbert could have meant by ‘completeness’ in
Grundlagen, we need to look more closely at his axioms and the roles they play
in the work. These axioms are divided into five groups: (I} Axjoms of
Incidence, (I} Axioms of Order, (III}) Axioms of Congruence, (IV) Axiom of
Parallels, and (V) Axioms of Continuity. The two crucial omes for present
purposes form group (V)

V.1 (Archimedes’ Axiom) If AR and CD are any segments, then there exists a
number # such that z segments CD constructed successively from 4 on, along
the ray from 4 through B, will pass beyond the point B.

25 We say ‘in effect’ because Hilbert sili doese™t have an. explicit, mathematically precise notion of
interpretation 4 /o Tarski at his disposal; moreover, compare the rext fooinote.

26 Hilbert 1971, 3, criginal emphasis. It is, we should note, stili possible to read this definition as
introducing an interpreted language, in such a way that it allows for various ‘reinterpretations’,
along the lines of Dedekind’s ‘translations’ of the language of arithmetic. Hilbert will be considerably
more definite about using formal languages in his later work.

27 Hitbert 1971, 2, original emphasis.
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V.2 (Axiom of Line Completeness) It not possible to extend the system of points ona
line with its order and congruence relations in such a way that the relations holding
among the original eletnents as well as the fundamental properties of line order and
congruence following from Axioms I-IH and from V.1 are preserved

Later Hilbert adds some explanations about the respective roles of these two axioms
and about their relation to each other:

The [line] completeness axiom is not a consequence of Archimedes’ Axiom. In fact,
in order to show with the aid of Axioms -1V that this geometry is identical to the
ordinary analytic “Cartesian” geometry Archimedes’ Axiom by itself is not
sufficient (cf. Sections 9 and 12). Oa the other hand, by invoking the [fine]
compieteness axiom [ ... ] it is possible to prove the existence of & limit that
corresponds to a Dedekind cut as well as the Bolzano-Weierstrass theorem
concerning the existence of condensation points; hence this geometry turns out
to be identical to Cartesian geometry.”™

And shortly thereafier:

By the above treatment the requirement of continuity has been decomposed into
two essentially different parts, namely into Archimedes’ Axiom, whose role is to
prepare the requirement of continuity, and the {line] completeness axiom which
forms the cornerstone of the entire system of axioms. The subsequent
investigations rest essentially only on Archimedes’” Axiom and the completeness
axiom is in general not assumed.”

Again later on in the fext:

{T]f in a geometry only the validity of the Archimedean Axiom is assumed, then itis
possible to extend the set of points, lines, and planes by *irrational’ elements so that
in the resulting geometry on every line a point corresponds, without exception, to
every set of three real numbers that satisfy its equation. By suitable interpretations
it is possibie to infer at the same time that afl Axioms 1=V are valid in the extended
geometry. This extended geometry (by the adjunction of irrational elerents) is
thus none other than the ordinary space Cartesian geometry in which the [ne]
completeness axiom V.2 also holds.?!

Several aspects 1n these remarks deserve comment: first, note that Hilbert is again
explicit that his axioms allow for different interpretations or models. Thus, a
‘Cartesian’ geometric space just based on the set of rational numbers and certain
algebraic numbers fulfills alf his axioms for Euclidean geometry besides the Axiom
of Line Compieteness.’” Second, what that axiom adds is to insure that any system

28 Hilbert 1971, 26.

29 Hilbert 1971, 28,

30 Flbert 1971, original emphasis. -

31 Hilbert 1971, 59, original erphasis.

32 As Hilbert points out, it suffices to consider the field of aigebraic numbers that arise from the number 1
and the iterated application of five operations: addition, subtraction, multiplication, division, and the
drawing of roots of the form 1 + a2 (Hilbert 1971, 29).

Completeness and Categoricity. Part I 11

of objects satisfying all of the axioms is-essentially the same as—in Hilbert’s words, ‘is
none other than—ordinary Cartesiar space, as based on the set of real numbers. That
fact is presumably the sense in which for him it ‘forms the cornerstone of the entire
syster. of axioms’. In fact, what this last axiom does, against the background of the
others, is to make Hilbert’s whole system of axioms categorical. )

At the same time, asserting simply and unequivocally that Hilbert understands his
axioms to be categorical would be too strong. Note that, like Dedekind, he does not
yet work with an explicit, general notion of isomorphism in Grundlagen. Beyond that,
ne does not state a theorem that establishes, even implicitly, that his axioms are
categorical; he leaves it at the short remarks above, without proofs. He also fails to
observe that the semantic completeness of his axioms is a consequence. In the latter
two respects his discussion falls behind Dedekind’s. Finally, while relative
completeness and {(partial insights into) categoricity play some role in Hifbert's
work, it never becomes entirely clear whether he means one or the other by the
intended ‘completeness’ of his system of axioms.

In fact, if we go slightly beyond Grundlagen it appears that what is meant by
‘completeness’ in Hilbert's works from this pericd might be something else ingtead.
In his article *Uber den Zahlbegriff published in 1900 and obvicusly written not
iong after Grundlagen, he comments again about the case of geometry:

[In geometry] one begins by assuming the existence of all the elements [ ... J and
then [ ...] brings these elements into relationship with one another by means of
certain axioms [ ... }. The necessary task then arises of showing the consistency
and the completeness of these axioms, ie., it must be proved that the
application of the given axioms can never lead to a contradiction and, further,
that the system of axioms is adequate to prove ail geometrical propositions.

[”.]33

According to the last phrase in this passage, the axioms of geometry are supposed to
aliow for proofs of ‘all geometrical propositions’, not just ‘the most important
geometric theorems® as Hilbert wrote in Grundlagen. This opens up the possibility
that what Hilbert really means by ‘completeness’, both in ‘Uber den Zahibegriff’
and in Grundlagen, is what we have called logical completeness: the {informal)
provability of all truths of geometry from his axioms.

Overall it seems fair to say, however, that Hilbert is just not entirely clear on the
notion of ‘completeness’ at the time of writing Grundiagen and Uber den Zahlbegriff .
Some passages in them perhaps point to categoricity (our Definition 2), others to
relative completeness (Definition 5), and stili others to logical completeness
{Definition 6). In fact, the unclarity is furthered by Hilbert’s use of the word
‘completeness’ also in the ‘Axiom of Line Completeness’, as well as by his practice
of dropping the qualifier “line’ in ‘line completeness’ later on in the text.”

In connection with this additional use of ‘completeness’ by Hilbert, two further
clarifications should be made, one historical and one conceptual. First, the Axiom
of Line Completeness is actually not present in the original German edition of
Grundlagen from 1899. It can be found for the first time in the French translation
of the text from 1900 (the year in which “Uber den Zahlbegriff’ appeared), after that

33 Hilbert 1960; we use the translation Hilbert 1996, 1992-3, original emphasis.
34 The German word used in both cases is Pollstdndigheit.
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also in the English translation from 1902, and then in the second German and all
subsequent editions. Moreover, the initial version of the axiom is not that quoted
above, but the following variant:

Axiom of Completeness. It is not possible to add new clements to a system of
points, straight lines, and planes in such a way that the system thus generalized
will form a new geometry obeying all of the five groups of axioms. In other
words, the elements of geometry form z system which is incapable of being
extended, provided that we regard the five groups of axioms as valid.”

That is to say, the Axiom of Completeness is initially formulated as a maximality
condition for the whole space. It is only later that Hilbert reformulates it as a
maximality condition just for lines in the space. (In later editions of Grundlagen the
initial version of the Axiom of Completeness for the whole space becomes a
theorem, 1.e. is proved based on the axiom just for lines. >

The conceptual point of dlarification is this: Hilbert’s Axiom of Completeness
asserts that (the whole space or) each line in space cannot be extended further—by
adding additional points—while maintaining all of the other axioms. It is worth
being very precise and explicit here so as to prevent a common’ misinterpretation.

Namely, the axiom does not say anything about the semantic, deductive or logical -

completeness of the systemn of axioms; nor does it say anything about categoricily,
e.g. explicitly requiring the system of axioms to be categorical”” Tt is true, of
course, that the Axiom of Line Completeness together with the other axioms has as
a consequence the categoricity of the whole system of axioms; and such categoricity
has, in turn, as a consequence the semantic completeness of this system of axioms.
Still, what the Axiom of Line Completeness itself mentions is points in geometric
space, not formulas in the corresponding language. In other words, what it asserts
is the ‘completeness’ (better: maximality} of the geometric space, not the
completeness of the axiomatic system. This aspect comes out clearly if we
reformulate Hilbert's axioms in formal logical terms. The Axiom of Line
Completeness then shows itself to involve quantification over models of the axioms,
not over sentences.’

Three final, related observations abowt Grundlagen: first, like the Peano
Axioms for the natural numbers, Hilbert’s axioms for geometry can be
formulated naturally and directly in higher-order logic. Indeed, except for Line
Completeness, which is essentially higher-order, the axioms require only first-
order logic. But Hilbert himself, fike Dedekind before him, just works with an
informal background theory of functions and sets. Second, at this point in time

Hilbert, again like Dedekind, does not have a precise enough notion of formal”

deduction at his disposal to be able to conceptualize the notion of deductive
completeness, as opposed to categoricity, relative -completeness, or logical

35 Hitbert 1902, 25. '

36 In 2 footnote Hilbert attributes this result to Paul Bernays; see Hilbert 1971, 27.

37 1t has been taken to do one or the other by various commentators, from Vebien 1944, 346-7, on (see 3.5
below). Compare Fracukel (4.2 below), more recently also Corcoraa 1972, 108, for <larifications
concerning this issue.

38 For interesting further discussions of Hilbert’s Axiom of Line Completeness in the light of more general
mathematical developments see Bhrlich 1995, 1997. For more historical and phifosophical background,
in particular involving Hilbert’s relation to Husser in this conmestion, compare also Majer 1997 and
DaSilva 2000,
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completeness. Third, Hilbert is Jess explicit than Dedekind about the connection
between calegoricity and semantic completeness, and about the related notion
of semantic consequence, as we have seen.”® Overall, he seems to have no
awareness vet that the metion of informal mathematical provability might be
fruitfully analysed either in.terms of syntactic or semantic consequence, or that
there might be a significant difference between the latter two. (This will, of
course, change drastically in his later work.}

3.3, Dedekind and Hilbert on the real numbers

Besides the natural numbers and geometric space, what called most urgently foran
axiomatic treatment in nineteenth- and early twentieth-century mathematics was the
theory of the real numbers, and with it the Calculus. The contributions of three
mathematicians are particularly interesting in this connection: Dedekind, Hilbert
and the American postulate theorist Edward V. Huntington.™ We consider
Dedekind's and Hilbert’s contributions briefly in this Section, and Hunatington’s in
the next.

Today it is common to base the theory of the real numbers on the axioms fora
complete ordered field. The first explicit version of these axioms can be found in
Hilbert’s ‘Uber den Zahibegriff’ from 1900, However, considerations of the crucial
component in them-—a precise formulation of the axiom of line completeness or
continuity—go back at least as far as Dedekind’s “Sterigheil und Irrationale Zahlew'
from 1872.% What Hilbert did in ‘Uber den Zahlbegriff was not only to formulate
his own version of that axiom, but to complement it with explicit axioms for an
ordered field. Hilbert’s axioms are divided into four groups, in anaiogy with his
treatment of geometry: (I) Axioms of Composition (assuring the existence of sums,
products, inverses, etc. for all numbers), (1) Axioms of Calculating
(commutativity, associativity, ete.), (IIF) Axioms of Ordering (connecting addition
and mulfiplication to the ordering, in the usual way); and finaly, (IV) Axioms of
Continuity.

Before examining the two axioms in Hilbert's group (IV), let us frst remind
ourselves of Dedekind’s characterization of line completeness, as well as of some
standard variants of it. Dedekind’s main contribution in ‘Sterigkeit und Irrationale
Zahler® was to consider the following condition for a set of numbers R:

Dedekind continuity: for all cuts {4, B) of R there is an element ¢ in R such that
asc<bforallac dandallb € B

Given the axioms for an ordered field, this condition is equivalent to the following:

Least upper bound preperty: for all subsets § € R, if Sis bounded from above, then
there is a least upper bound for §in R.

39 Insofar as Hilbert is centraily concerned with independence questions in connection with the axioms for
geometry and cruciaily answers these by considering models for various subsets of the axioms, the
notion of semantic consequence is implicit in his early work. However, its refation to informal
mathematical provability is not thematized by him at this point, much less its relation to a formal
notion of deducibility.

40 For general background on the ‘American postulate theorists’, including Huntington, compare Scanlan
1991.

41 Dedekind [872.
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Several additional variants have also played an important role historically:
Bolzano continuity; every bounded, infinite subset of Rhasa condensation pointin R.

Weierstrass continuity: every bounded, infinite, and increasing sequence of elements
in R has a least upper bound in R.

Cauchy continuity: every infinite Cauchy sequence of elements in R converges to an
elementin R.

Cantor continuity: every infinite nested sequence of intervals in R has a non-empty
intersection. T

Bach of these conditions captures, in a slightly different but cquivalent form, what it
means for the real line to be ‘line-complete’ or ‘continuous’. A logical formulation of
any one of them requires second-order logic. .

Hilbert, clearly aware of several of these alternatives, chooses none of them for his
axiomatization of the reals. Instead, he uses the same procedure as in Grundlagen,
taking as Axiom IV.1 the Archimedean Axiom and complementing it with the following:

IV.2 (Axiom of Completeness): It is not possible to add to the system of numbers
another system of things so that the axioms 1, II, I1], and IV.1 are also ali satisfied
in the combined system; in short the numbers form a system of things which is
incapable of being extended while continuing to satisfy ali the axioms. ™

This condition might be abbreviated as follows:

Hilbert continuity: There is no ordered Archimedean field of which R is a proper
ordered subfield.

Hilbert is aware, again, that adding these two axioms rules out all unintended
models. That is to say, he notes that any system of numbers satisfying all of his
axioms is essentially the same as the familiar system of real numbers:

A}‘doms 1V.land IV.2[ ... ]imply (as one can show) Bolzano’s theorem about the
existence of a point of condensation. We therefore recognize the agreement of our
number system with the usual system of real numbers.®

It is tempting, once more, to attribute a clear understanding of the categoricity of his
axioms for the real numbers to Hilbert. However, as in the case of geometry there are
reasons to be more hesitant and cautious in that respect. In particular, Hilbert does
again not formulate 2 corresponding theorem, much less does ke prove ome; he
only hints at the issue in the remark above. More basically, he still does not have a
precise, general notion of isomorphism at his disposal. He also, once more, does
not infer the semantic completeness of his axioms from the above.

42 Hilbert 1996, 1694.
43 Hilbert 1996, 1095,
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Finally, Hilbert stili has little to say abont what he means by ‘completeness’ in this
case, except for the following brief, but pregpant remark at the very end of *Uber den
Zaklbegriff

Under the conception described above, the doubts which have been raised against
the existence of the totality of all real numbers [ . . . J1ose all justification; for by the
set of real numbers we do not have to imagine, say, the totality of all possible laws
according to which the elements of a fundamental sequence can proceed, but
rather—as just described-—a system: of things whose mutual relations are given
by the finite and closed system of axioms -1V, and about which new statements
are valid only if one can derive them from the axioms by means of a finite
number of logical inferences.*

Note the phrase ‘a finite number of fogical inferences” at the end. This might. be
taken to point in the direction of formal deduction and the deductive consequence
relation, although Hilbert still has no system of Jogical deduction at his disposal
that would give that notion a real bite. Indeed, it seems more iikely that by ‘a
finite number of logical inferences” he still simply means an ordinary, informal
mathematical proof.

3.4. Huntington on the positive real numbers

The next step in clarifying the motion of completeness, in particular in
understanding the notion of categoricity as a kind of completeness, was taken by
Edward V.- Fluntington in a series of papers from shortly after the turn of the
century. The earliest and most relevant is his *A Complete Set of Postulates for the
Theory of Absolute Continnous Magnitude’ from 1902.%°

In this article, Huntington does not try to give axioms—or ‘postulates’ as he
prefers to call them—for the system of all real numbers, but only for the positive
real pumbers, which he calis ‘absolute continuous magnitudes’. Besides refatively
standard requirements for the algebraic and the ordering properties of the positive

- real mumbers, this involves again am ‘axiom of continuity’. Here is Huntington’s

version of it

Postulate §5: I § is any infinite sequence of elements g, such that ax <@g+ 1, &<
(k=1,2,3, ...) (where ¢ is some fixed elemnent), then there is one and only one
element A having the following two properties:

(1) ap<A whenever i belongs to 57
(2) ifyand A’ are such that y + 4'= 4, then there is at least one element of .S, say
a,, for which 4" < a, ¢

He adds in-a footnote: “This postulate 5 is essentially the same as the principle
employed by Weierstrass, in his lectures, for the definition of an irrational mumber.’

44 Hitbert [996, 1093, original emphasis.

45 Huntington 1902; compare also Huntington 1903. Besides these two, a number of other articles on
related topics {axioms for the complex numbers, groups, fields, ete.) were published by Huatingion in
the Transactions of the American Mathematical Saciety during the following years. For later
sumenaries of the corresponding results ses Huntington 1911, 1917.

46 Huntington 1902, 267. Both here and below we have changed Huntington's notation skightly.
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Thus Huntington does not use a Hilbert-style maximality condition, although he
draws on Hilbert’s work in other ways.*’
Early on in his essay Huntington writes about his goals:

Introduction: The following paper presents a compiete set of postulates or primitive
propositions from which the mathematical theory of absolute continuous
magnitude can be deduced. [ ... ] The object [ ... ] s to show that [the following
six postulates] form a complete set; that is, they are (I) consistent, (L) sufficient,
(118} independent (or irreducible). By these three terms we mean: {1) there is at least
one assernblage in which the chosen rule of combination satisfies all the six
requirements; (1) there is essentially only one such assemblage possible; (II]) none
of the six postulates is a consequence of the other five. { ... ]| [T[he propositions
1-6 form a complete logical basis for a deductive mathematical theory.®

The second of Huntington's three conditions of adequacy for an axiomatic system—
what he calls ‘sufficiency’-—is clearly the one most relevant to the current discussion.

Like Dedeking in the case of the naturai numbers, Huntington devotes several
lemmas and theorems to his condition of ‘sufficiency’ in the rest of his paper. The
most important of them Is the following: '

Theorem II: Any two assemblages M and M which satisfy the postulates -6 are
equivalent; that is they can be brought into one-to-one correspondence in such a
way that a+ b will correspond with @' + & whenever a and b in 3 correspond with
@ and b’ in M’ respectively.”

Thus, what Huntington provides is this: a careful formulation of the notion of
isomorphismy; an explicit definition of categoricity (‘sufficiency’) based on it; and a
separaté theorem, with proof, to the effect that his system of postulates is categorical.

At the same time, what Huntington means by ‘completeness’ in the passage from
fiis Introduction above still remains somewhat unclear. Much depends on what is
meant by his cryptic phrase ‘a complete logical basis for a deductive mathematical
theory’. There is no question that he makes categoricity central to his paper, which
suggests that perhaps that is what he means by “completeness’. However, the phrase
‘deductive mathematical theory’ points to either deductive or logical completeness.
Furthermore, any awareness that these notions might be significantly different from
categoricity, or from semantic completeness, is still missing. As in Hiibert’s case,
the notion of ‘deducibility’ remains too vague, and too tied to an unanalysed,
information notion of mathematical provability, to atlow for further progress.

Nevertheless, Huntington combings, in an explicit and careful way, several of
Dedekind’s and Hilbert’s insights. He also coins—apparently for the first time—a
special name for categoricity, namely ‘sufficiency’. In those respects, format
axiomatics is consofidated on a high level in his work.

47 ‘Huntington’s paper contains a generous, interesting list of historical references, including to Hilbert
190%; see Huntington 1902, 265-6.

4% Hustington 902, 266, original emphasis.

49 Huntington 1962, 277,

50 AsJohn Corcoran has pointed out to us, a particularly interesting, systematic treatment of these issues
can be found in Huntington 1917, parts of whick were published already in. 1903-6. It wouid be worth
analysing Huntington’s contributions in this and refated works farther.

Completeness and Categoricity. Part T 17

3.5. Vebien on Euclidean and projective geownetry

Hilbert's axiomatic approach, especially as applied to geometry, was also adopted
and developed further by Oswald Veblen, anotber of the so-called American postulate
theorists.” Veblen started his mathematical career with a detailed study of Hilbert's
Grundlagen. As a result he proposed a modified set of axioms, first published in his ‘A
system: of axioms for geometry’ from 1904.%

Several of the notions discussed so far come up in Veblen's paper. To begin with,
in describing his goals he writes:

Tt is part of our purpose to show that there is essentially only one class of which the
twelve axioms are vafid. { ... ] Consequently any proposition which can be made in
terms of points and order either is in contradiction with our axioms or is equally
true of all classes that verify the axioms. The validity of any possible statement in
these terms is therefore completely determined by the axioms; and so any further
axioms would have to be considered redundant. | ... 1 A system of axioms such as
we have described is called caregorical, whereas one to which it is possible to add
independent axioms (and which therefore leaves more than one possibility open) is
called disiunctive.”

Regarding his terms “categorical’ and ‘disjunctive’ Veblen adds in a footnote: “These
terms were suggested by Professor John Dewey.” In the main text he continues:

The categorical property of a system of propositions is referred to by Hilbert in his
‘Axiom der Vollstdndigkeit’, which is translated by Townsend {the translator of
Grundlagen] into “Axiom of Completeness’. E. V. Huntington, in his article on the
postulates of the real number system, expresses this conception by saying that his
postulates are sufficient for the complere definition of essentially a single assemblage.
1t would probably be better to reserve the word definirion for the substitution of one
symbol for another, and to say that a system of axioms is categorical if it is
sufficient for the complete determination of a class of objects or elements.>

A number of points in these two passages deserve our attention.

First, Veblen is obviously quite clear about what categoricity amounts to, referring
back to Huntington in that connection. At the same time, when he writes that ‘the
categorical property of a system of propositions is referred to by Hilbert in his
“Axiom der Vollstdndigheit™ he apparently musinterprets Hilbert's axiom, or at
least describes it in a misleading way.

Second, Veblen, like Dedekind before him and again without proof, remarks
explicitly that semantic completeness is a direct consequence of categoricity. Yet,
note that his main formulation of semantic completeness—'any proposition either
is in contradiction with our axioms or is equally true of all classes that verify the

51 For more on Veblen's contdbutions o logic and the foundations of mathematics see Aspray 199%;
compare zlse again Scanlan [99.

52 Veblen 1904, compare also Veblen 1902. What Veblen tried 16 do, in particular, was to reduce the
number of primitive notions in geometry to two: “point’ and ‘order’. However, this reduction didn’t
quite work, 25 one needs ‘congruent’ in‘addition. Compare Tarski and Lindenbaum 1926 and Tarski
1983, 306~7, for later clarifications about this issue. We are grateful to Michael Scanlan for making
us aware of this detail.

53 Veblen 1904, 346, original emphasis.

54 Veblen 1904, 3467, original emphasis.
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axioms'—does not amount to our Definition 3(1}, as in Dedekind’s case, but to
Definition 3(3).”® In addition, Veblen’s subsequent remark that “the validity of any
possible statement in these terms is therefore completely determined by the axioms’
agrees with Definition 3(2). And Veblen’s definition of a system of axioms being
“disjunctive’—'one to which it is possible to add independent axioms {and which
therefore leaves more than one possibility openy—points to Definition 3(4). So
three of our four versions of ‘semantic completeniess’ come up explicitly in Veblen’s
remarks, and he treats them as obviously eguivalent.

Third and perhaps most inferestingly, Veblen relates categoricity more closely to
sernantic completeness than has beer done previously. Note, e.g., how he introduces
being disjunctive as a sort of complementary concept to-—-the negation of?—that of
being categorical, and also as the negation of semantic completeness in the form of
Definition 3(4). Still, it remains unclear what exactly the relation between these
concepts is supposed to be.

In 1906 Veblen published another article on the same general topic, called “The
foundations of geometry: a historical sketch and a simple example’. This article was
written for the magazine Popular Science Monthly, as an overview article for a
broader audience. It contains several passages which illuminate Veblen's views
further. In connection with the notion of categoricity he now remarks:

1f we have before us a categorical system of axioms, every proposition which can
be stated in terms of our fundamental (undefined) symbols either is or is not true of
the systern of objects satisfying the axioms. In this sense it either is a consequence
of the axioms or is contradictory with them.>

Let us suppose that what Veblen meant was that ‘every proposition either is or is not
true of every system of objects satisfying the axioms’ (since, as he had emphasized
earlier, a categorical system of axioms has ‘essentiaily only one’ model). Then we
can see him again moving without hesitation from categoricity to semantic
completeness in this passage, the latter now formudated in the form of Definition
3(3)--assuming we understand the phrases ‘comsequence of the axioms™ and
‘contradictory’ in the semantic sense.

That Veblen usually does mean *consequence’ in the semantic sense, as opposed to
the deductive sense, in the articles under discussion is confirmed by another brief
remark from his 1904 article. There he notes that in the case of a categorical, thus
semantically complete, system ‘fany new axiom is redundani] even were it not
deducible from the axioms by a finite number of syllogisms”.¥ Note, at this point,
the following: what Veblen suggests here is thal & potential new axiom might be a
semantic consequence of the old axioms without being a deductive consequence of
them, ie. without being ‘deducible in a finite number of syllogisms’. What that
tmplies, of course, is that the notion of semantic consequence might not coincide
with that of deductive consequence. This is a radically new suggestion.

In another brief aside from his 1906 article Veblen is more direct and exphicit, even

if stifl somewhat hesitant, on the same topic. Here he formulates the following
question:

55 We are interpreting ‘in contradition with our axioms® here as ‘not satisfiable together’, i.c. as involving
semantic inconsistency. We will provide further justification for that interpretation shortly.

56 Veblen 1906, 28.

57 Veblen 1904, 346,
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But if [a proposition] is a consequence of the axioms, can it be derived from them
by a syllogistic process? Perhaps not.*®

Given that Veblen, like Dedekind, Hilbert and Huntington before him, is not using a
precise notion of deductive consequence, and only an nplicit notion of semantic
consequence, this guestion is quite remarkable and insightful. With it Veblen takes
a significant step beyond all the other authors considered so far.

A final word on Veblen: soon after finishing his work on Hilbert and Euclidean
geometry, he turned his attention to projective geometry; and within a few years he
and his co-worker J. W. Young succeeded in, among other things, formulating a
categorical system of axioms for that geometry as well. This axiom system was first
published in their article ‘A set of assumptions for projective geometry’, from 1908.%

4. Legic and metatheory

Let us take stock briefly. By 1908 we have axiomatizations for several main
areas of then-contemporary mathematics: the theories of the natural numbers,
the real numbers, and Euclidean and projective geometry. In each case
‘completeness’ is stated as an explicit goal, a criterion of adequacy for the
axiomatization. What ‘completeness’ means, more or less explicitly, is primarily
categoricity, secondarily semantic completeness (in various eguivalent forms),
and in some cases even relative completeness or logical completeness. Also,
semantic completeness is. repeatedly recognized to be a direct consequence of
categoricity, although no proof of that fact is ever given; and sometimes the
two notions are conflated, or apparently treated as equivalent. Finally, it is
only arcund 1904-190¢ that we have found the first expression of a suspicion,
in some asides of Veblen's, that neither categoricity nor semantic completeness
may need to coincide with deductive or logical completeness, or more
generally that the deductive comsequence relation may differ from its semantic
counterpart.

4.1. Principia Mathematica and its descendants

From a contemporary point of view the main ingredient missing in the works
considered so far is a precise and purely formal notion of deductive consequence.
Without such a notion, it is hard to study the relation between semantic and
deductive consequence systematically, or even to formulate the relevant questions
in a clear and fruitful way.%* That situation only changed gradually. Ignoring the
work of Gottlob Frege, 2s was in effect done at the time.®' the first major step
forward in that connection was the publication of Whitehead and Russeils
Principia Mathematica in 1910-1913.% Although the authors of Principia did not

58 Vebien 1906, 28.

59 See Veblen and Young 1908. Compare also the more systematic discussion in Veblen and Young 1910,

80 As already noted, the notion of semaniic consequence was also not given a mathematically precise
articulation untif later, despite havisg boen used with varying degrees of precision by some of the

writers considered so far. -

Frege's work on logic in Frege 1879 and later writings failed to have a significant influence on the

developments discussed s¢ far, as already mentioned in the case of Dedekind. This was, no doubt,

partly due to his traditional, anti-formalist views about axiomatics. For ifluminating recent

discussions of that aspect of Frege's logic see Blanchette 1996 and Goldfarb 2041.

62 See especially the fiest volume, Whitehead and Russeil 1910.
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caste their logic intc a formal axiomatic mold in the spirit of Dedekind, Peano,
Hilbert, Huntington, and Veblen, they did convince several mathematicians and
logicians of the value of their new, more formal approack to logical deduction,
notably Hilbert and Rudolf Carnap.®

The logic presented in Principia was essentially higher-order predicate logic,
together with a controversial ‘ramified’ theory of types and axioms of reducibility,
infinity and choice. From a later point of view, it contains a number of
philosophically-motivated compiications that were mathematically inconvenient
and unnecessary. This was recognized gradually in the 1920s, in connection with
the following two discoveries: first, one can isolate the subsystems of propositional
and first-order logic and study them with good results. Second, one can simplify
the higher-order part of the logic to the ‘simple’ theory of types, thus also
eliminating the need for ‘the problematic axiom of reducibility, at least for
mathematical purposes.

From today’s point of view if hardly seems necessary to motivate the separate
attention given to propositional and first-order logic. We have come to
understand that these subsystems have interesting and mathematically significant
properties. In particular, both propesitional and first-order logic are complete
with respect to standard truth-value and set-theoretic semantics, in the sense of
Definition 1 above. For propositional logic this result was established
independently by Paul Bernays, in an unpublished work from 1918, and by
Emil Post, who published it in 1921.%¢ For first-order fogic it was established
by Kurt Gédel in 1929.% Moreover, first-order logic was early-on shown to
have various related characteristics like compactness and the Liwenheim-
Skolem properties.

From the 1910s to the 1930s, most logicians working on axiomatics and the
foundations of mathematics—including Hilbert, Gédel, Carnap and Tarski—did not
work with first-order logic, however, but with some version of higher-order logic,
along the lines of simple type theory. A main historical source for that theory was
Frank Ramsey’s article ‘Mathematical Logic’, from 1926, in which various arguments
for simplifying the logic of Principia were giver. % Similar suggestions were also made
by others around that time, including the Polish logician Leon Chwistek.%” The first
general exposition of the theory was published in Rudolf Carnap’s 4brif der Logistik
from 1929. The theory reached its ‘canonical’ form in Alonzo Church’s “A formulation
of the simple theory of types’ from 1940,

Of course, we now know that neither higher-order logic nor the restricted
fragment called second-order logic are complete in the sense of Definition 1 with

-respect to their standard set-theoretic semantics, as was famously established by

63 For Hilbert see Sieg [999; for Carnap see Section 4.2 below.

64 See Bemnays 1918 and Post 1921; compase also the historical discussion in Sieg 1999 and Zach $959.

§5 See (Gadel 1929 and the published version in Gadei 1930; compare also Henkin 1950. Around the same
time as Gadel, and independently, Jacgues Herbrand developed similar ideas in his dissertation;
compare the historical notes in Church 19356, 291, Goldfarb 1971, 265ff. and Dreben and Heijenoort
1986.

66 Ramsey 1926. Ramsey's views were influenced by, among others, Ludwig Wittgenstein.

67 See Chwistek 1925, afso Chwistek 1967, especiafly 342-3; the latter was originaliy published as Chwistek
192%. Compare also the corresponding historical notes in Church 1956, 355.

68 See Casnap 1929 and Church 1940. Note that Godel 1931 is also based on a version of the simple theory
of types. In contrast, Hilbert and Ackermana 1928 is still framed in ramified type theory. Moreover, it
shouid be emphasized that Frege’s Begriffsschrifi of 1379 already contained the essentials of simple type
theory.
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Gédel in 1930.%° It should be kept in mind, however, that this incompleteness is
relative to a particular choice of semantics.”” Moreover, owing to its greater
expressive capacity, higher-order logic has some important advantages for
axiomatics. In particular, it permits the finite and categorical sxiomatizations of the
classical mathematical theories discussed above.

4.2, Fraenkel, Carnap and early metatheory

In addition to the emergence of both first-order logic and the simple theory of
types, the 1920s and 1930s saw an increase of attention to metatheoretic questions,
now alse including consideration of formal deduction, and especially in connection
with the notions of completeness and categoricity.

Much of this work came out of, or was influenced by, the Hilbert school of proof
theory centred at Gottingen.”® At this point, Hilbert and his coworkers paid special
attention to deductive issues, thus going far beyond Hilbert's Grundlagen der
Geometrie and ‘Uber den Zahlbegriff in that respect. As a result, influential
statements of the question whether first-order logic is complete in the sense of our
Definition | were published both in Hilbert and Ackermann’s Grundziige der
theoretischen Logik from 1928 and in Hilbert's ‘Probleme der Grundlegung der
Mathematik’ from 1929; and the same is true for the question whether the then
usual axiom systems for the natural and real numbers are deductively or logicaily
complete in the sense of our Definitions 3 and 6, respectively.”” Answers to these
questions, as well as further resuits along similar lines, were primarily due to Kurt
Godel in Vienna and to Alfred Tarski and his coworkers in Warsaw.”

Here we will focus on the contribations of two other figures: Abraham Fraenkel
and Rudolf Carnap. Their works are particularly relevant for several reasons: first,
many of their metatheoretic investigations actually pre-date those of Gédel and
Tarski, and are largely independent of the Hilbert school. Second, there is a direct
connection between their investigations and the developments described earlier in
this paper. Third, unlike most metatheoretic studies from the 1930s and 1940s on,
theirs are not restricted to first-order logic, thus providing us with a useful broader
perspective. And fourth, some of the questions raised in their writings—especially
concerning the relation between semantic completeness and categoricity in the
specific context of higher-order logic-—are not only interesting, but also still
unresolved. Overall, we believe that Fraenkel and Carnap deserve more attention
and credit in this connection than they have received so far.

Probably the first text to focus directly and systematically on the relation between
categoricity and several different notions of completeness was Fraenkel's Einleitung in
die Mengenlehre. This bock was initially published in 1919, enlarged to a second
edition in 1923, and enlarged again to a third edition in 1928.7 The first edition is

69 The result was first published in Godel 1931. For historical notes in this connection see Dreben and
Heijenoort 1986.

70 In the sequel we will consider alternate sermantics relative to which deductive higher-order logic is
complete.

71 See again Sieg 1999, We also count Hermarm Weyi as a member of Hilbert’s school here; compare in this
connection Weyl 1926, especially chapter I: ‘Mathematical Logic. Axiomatics’.

72 Hilbert and Ackermann 1928 and Hilbert 1929; the latter was presested as a lecture in Bologna in 1928.
For historical background compare here Direben and Heljenoort 1986 and Mancosu 1998, 149-88.

73 For Gédel see the works cited abuve, for Tarski see many of the articles in Tarski 1983, especially
Lindenbaum and Tasski 1935, ’

74 For the second and third editions sec Fraenkel 1923, 1928. Translations of passages from. these works
will be cur own.
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still silent on this issue, but in the second Fraenkel adds a separate section on ‘the
axiomatic method’. In it he considers several general questions and conditions
concerning axiomatic theories of the kind we encountered above, i.e. finite sets of
axioms. Thus he writes:

Besides independence [of the axioms] a second, even more important propesty
usually required, if possible, from a system of axioms is the completeness of the
system. This property has been studied much less so far and, when studied at
all, has not always been undetstood in the same sense. What probably comes to
mind first is the conception according to which the completeness of an
axiomatic system demands that the axioms encompass and govern the entire
theory based on them,. in such a way that every relevant question can be
answered, one way or .the other, by means of inferences from the axioms.
Obvicusly assessing completeness in this sense is closely connected with the
problem of the decidability of mathematical questions discussed in the previous
paragraph {...] and is, thus, impeded by considerable difficulties. f

-]

More sharply circwmscribed and easier to assess is another sense of
completeness for a system of axioms, a sense first characterized fully by O.
Veblen, it seems.” According fo it an axiomatic system is called complete if it
determines uniquely the mathematical obiects governed by it, including the
basic relations between them, in such a way. that between any two
interpretations of the basic concepts and relations one can effect a transition by
means of 2 1-1 and isomorphic correlation. [ ... 1

Thus in 1923 Fraenkel distinguishes clearly between categoricity (the second notion
mentioned} and what looks very much lke deductive completeness (the first notion
mentioned). However, no distinction is made between deductive and semantic
completeness, leaving a small doubt about what is meant by the phrase ‘inferences
from the axioms’ above.

Fraenkel adds an explicit discussion of the latter distinction in the third edition of
his book. There the passage just quoted is modified and expanded as follows:

fTihe completeness of a system of axioms demands that the axioms encompass
and govern the entire theory based on them in such a way that every guestion
that belongs to and can be formulated in terms of the basic notions of the
theory can be answered, one way or the other, in terms of deductive
inferences from the axioms. Having this property would mean that one
couldnt add any new axiom to the given system (without adding to the
basic notions) so that the systern was ‘complete’ in that sense; since every
relevant proposition that was not in contradiction with the system of
axioms would already be a consequence and, thus, not independent, ie., not

an ‘axiom’. { ... ] )
Closely related to this first sense of completeness, but by far not as far
reaching and easier to assess, is the following idea: [ ... ] In general, a

75 In a footnote Fraenkel refers to Veblen 1904 and Huntington 1962 at this point, as well as o cardier
work of his own.
76 Fraenkel 1923, 226-7, original emphasis.
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number of propositions that are inconsistenf with each other and that can,
thus, not be provable consequences of the same system of axioms can
nevertheless be compatible with that system individually. Such a system of
axioms leave open whether certain relevant questions are to be answered
positively or negatively; and it does so not just in the sense of deducibility
by curmrent or future mathematical means, but in an absolute sense
(representable by independence proofs). A system of axioms of that kind is
then, with good reason, to be called incomplete. As a consequence, one can
[...7 pose the problem of completeness also as follows: Let 4 be a
proposition relevant with respect to a given system: of axioms. The system is
to be called complete if, no matter whether we in fact succeed to deduce the
truth or falsity of 4 from the system or are able to secure its deducibility .
theoretically, only either the fruth or the falsity of 4—but not both
possibilities—is compatible with the system. [ ...}

Quite different, finally, is another sense of completeness, probably
characterized explicitly for the first time by Veblen. { ... 17 According to it
a system of axioms is to be called complete—also ‘categorical’ (Veblen) or
‘monomorpl’ (Feigl-Carnap)—if it determines the mathematical obfects falling
under it wniquely in the formal sense; ie. such that between any two
realizations one can always effect a transiion by means of a 1-1 and
isomorphic correlation.™

Clearly at this point, in 1928, Fraenkel is able to characterize distinctly first deductive
completeness, then semantic completeness, and finally categoricity, along lines quite
close to our Definitions 4, 3 and 2, respectively. Also, with respect to both
deductive and semantic completeness he mentions several of the variants
distinguished by us and, like Veblen, recognizes their equivalence.

A further step forward in the 1928 edition of Fraenkel's book is his recognition
and clarification of the difference between completeness in any of his three senses,
on the one hand, and completeness in the sense of Hilbert’s ‘Axiom of
Completeness’, on the other. Thus in a footnote, attached to the second paragraph
quoted above, Fraenkel writes:

So as to avoid misunderstandings let me emphasize that this kind of completeness
fdeductive completeness] has conceptually nothing to do with that involved in
{Hilbert’'s] ‘Axiom of Completeness’ | ... ] In the latter it is the objects
governed by the axioms, in the former the axioms themselves, that are not
capable of extension. Of course, there is still a close connection between what is
expressed in the Axiom of Completeness and the notions of completeness to be
discussed below. This connection awaits clarification in detail. [ ... ]

Fraenkel is obviously more careful and precise here than Veblen was several years
i 80
earfier.

77 Here Fraenkel refers again, now in the text, not just in a footrote, to Veblen 1904 and Huntington 1902,

78 Fraenkel 1928, 347-9, origival emphasis

79 Fraenkel 1928, 347,

80 In Rudolf Camap’s article “Eigentliche und uneigentliche Begriffe’, published in £927, this point is mede
a9 well, if more briefly; see Carnap 1927, 366, (On the relation between Carnap’s and Fraenkel’s works
see below.)
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In the main text, Fraenkel continues with a further clarification of the relation
between deductive and semantic completeness:

If one compares the three different (and, incidentally, by no means exhaustive)

notions of completeness above, completeness in the first sense has obviously a -

special status; it has, correspondingly, also been called ‘Entscheidungs-
definithei’. We could assess it only by ‘the establishment of a fixed method
of proof that leads, provably, to the solution of any relevant problem’. As
such it is to be left aside as unrealizable if the area in question is ot
trivial, e.g. of strictly finite structure (Weyl 1926, 20).%' The situation is
quite different with respect to the second notion. In that case there is, as
we should note, a difference between a decision ‘being-determinate-in-itself
and the general establishment of what that decision is, e.g. in the form of a
method of proof. Put in a more mathematical way: a system of axioms
could actually determine an area insofar as never to allow that besides a
well known axiom 4 its contradictory opposite —d is also compatible with
the axioms, while at the same time a decision was impossible about whether
4 or A4 holds, e.g. because suck a decision could not be forced in a finite
number of steps! Moreover, the establishment of a general method to make
such decisions could be impossible. In many cases the [semantic]
completeness of a system of axiomis may, then, be a fact. But the question
of how to establish that fact—as a characteristic property of a system of
axioms—is still open. That question is obviously of considerable interest, as
is the question of how to connect it to completeness in the third sense
above [categoricity].*

Two aspects of this last passage are particularly noteworthy: first, Fraenkel is much
more clear and definite than Veblen—not to mention Dedekind, Hilbert, and
Huntington—about the difference between deductive and semantic completeness.
He is also sirikingly pessimistic about the possibility of having a ‘non-trivial’
system of axioms that is deductively complete (partly because, following Weyl, he
still thinks it is not possible to come up with a legical calculus that is complete in
the sense of our Definition 1). Second, at the end of the passage he explicitly poses
the question of how semantic completeness and categoricity are related (in
conjunction with the question of how to establish that a system is semantically
complete in the first place}, As we saw, several earlier writers had stated, without
proof, that calegoricity implies semantic completeness. But crucially, Fraenkel’s
guestion also concerns the converse: Is it the case that semantic completeness
implies categoricity? ‘ )

This is the point at which to turn to Rudolf Carnap, in particular to a
neglected work on logic and axiomatics from the second half of the 1920s
entitled  Untersuchungen zur allgemeinen Axiomatik® In it Carnap extends
Fraenkel’s considerations in the following three ways: he makes serious
atternpts to answer Fraenkel’'s questions about the precise connections between
categoricity, deductive completeness, and semantic completeness. Unlike

81 The reference is to Weyl 1924,

82 Weyl 1926, 352, original emphasis.

83 This work bas only recently been edited and published, based on manuscripts found in Camnap’s
Nachiaf; see Carnap 2000. In what follows we draw heavily on the study of it {Awodey and Carus 2001).
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Fraenkel, he puts his investigations into a formal, logical framework, namely that
of the simpie theory of types. And he picks up on Fraenkel’s question concerning
the relation between his three notions of completeness, on the one hand, and
completeness in the sense of Hilbert’s ‘Axiom of Completeness’, on the other.
Carnap thus addresses, systematically and in detail, what we would now cail
‘metatheoretic’ issues. Indeed, a working title he sometimes used for his
investigations was ‘metalogic’.

Before considering Carnap’s metalogical investigations further, some basic
ideas and results need to be clarified from the point of view of a contemporary
reader so as to prevent some possible confusions. To begin with, it is well-
known today, and not hard to prove given the proper set-up, that the
categoricity of an axiomatic theory tmplies its semantic completeness. This is
not only true in the case of first-order logic, but also for axiomatic theories in
higher-order logic® On the other hand, the question of whether the converse
holds has not been answered completely even today, in spite of the fact that it
is, to use Fraenkel’s words, ‘obviously of considerable interest’. In addition,
this inference, from semantic completeness to categoricity, depends crucially on
two background conditions: first, it depends on the logical language used, in
particular on what sorts of sentences ¢ are supposed to occur in the definition
of semantic completeness. Clearly the inference fails, e.g., if. we restrict attention
to just first-order sentences.® But what about the case of higher-order logic?
Here, secondly, it is crucial to be precise about what is meant by ‘axiomatic
theory’. Indeed, it is mot hard to see that the inference from semantic
completeness to categoricity fails again if we consider general ‘theories” in the
sense of arbitrary sets of sentences in some given language (by an argument
from the bounded cardinality of such sets). However, in the historical examples
above we were concerned with the specific case of finite sets of axioms. The
remaining question—arguably the one Fraenkel had in mind--is then this: for a
theory T with finitely many axioms in higher-order logic, does the semantic
completeness of T (in the sense of Definition 3 above) imply its categoricity (in
the sense of Definition 2 above)?®®

Answering this and some related questions was exactly the task that
Carnap—who had not only studied the 1923 edition of Fraenkel's book
carefully, but also contributed to its 1928 ediion™—set himself during the
second half of the 1920s. That is to say, within a systematic logical
framework of simple type theory, influenced by Whitehead and Russell’s
Principia, he set out to investigate the relationships between the three different
notions of completeness suggested by Fraenkel. Carnap’s own terms for these
notions- were ‘Entscheidungsdefinitheit’ {deductive completeness), ‘Nicht-Gabel-

84 See Lindenbaum and Tarsks 1935, 390, for an carly statement of this resuit. Compare also Section 1.4
the sequel.

85 As the Lowenheim-Skolem theorems imply, a first-order theory may have only one elementary
equivalence class of models and yet not be categorical. .

86 Cutting to the chase, the answer to this question is still unknows. We will consider 2 few special cases for
which we know the answer to be positive in Section 1.4 of the sequel. Compare also again Lindenbaum,
and Tarski 1935 in this connection.

87 Carnap communicated his own research $o Fraenkel between the second and third edition of Fraeakel's
book, inctuding Camap 1927 and Pasrt I of Carnap 1928, Besides Fraenkel’s reference to Carnap’s (and
Feig¥'s) notion of *Monomorphie, see here the preface to Fraenkei 1928 in which ke thanks Carnap for
his help, refers to Camap 1927, and mentions ‘deeper still anpublished work by the same author’.
Compare also the corresponding discussion in Awodey and Carus 2061.
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bar-keit’ (semantic completeness, compare Veblen’s notion of being ‘non-
disjunctive’) and “‘Monomorphie’ (categoricity).®

The cornerstone of Carnap’s work, as reflected in his Axiomarik, is a theorem
called the ‘Gabelbarkeitssatz’. Tt essentially states that being ‘niche-gabelbar
{semantically complete) implies being “monomorph’ (categorical).® Unfortunately,
Carnap’s proof of this theorem is faulty, as he eventually came to realize himself.
This realization led him to abanden his entire metatheoretic project around 1930.

- In particular, he decided not to publish the Axiomatik, in spite of having already
completed a substantial manuscript.”® Nevertheless, the work was not without
immediate influence; for it seems to have served as a catalyst for the thoughts of
Carnap’s then-student Kurt Gédel, who was one of the few people to have read
Carnap’s manuscript.

There are several aspects of Carnap’s failure in trying to prove the ‘Gabel-bar-
keits-sarz’. In particular, he in effect assumed that any consistent theory has a
model that is definable within simple type theory, which is false.®! More
generally, he tried to combine a formal axiomatic approach with a genetic
logicist standpoint, with the result that he was less than fully clear about the
relations among various syntactic and semantic facts and properties. And
fundamentally; the work lacks the subsequent sharp distinction between syntax
and semantics, between object-language and meta-language. Despite these flaws,
we should recognize as one of Carnap’s main contributions in the Axiomatik to
have explicitly conjectured the ‘Gabelbarkeitssatz’, ie. the claim that semantic
completeness of a finite system of axioms implies its categoricity in the context
of the simple theory of types.

Anaother issue that Carnap considered in his investigation——one that was central to
the planned, but less finished second part of the Adxiomatik--was, again, the
connection between Hilbert's ‘“dxiom der Vollstdndigkeir and the other three
notions of completeness. In this connection, Carnap’s main coatribution was to
note that Hilbert’s axiom can be seen as a ‘extremal axiom’, more specifically a
‘maximality axiom’, in that it says that no model can be extended without violating
one of the other axioms. As Carnap also noted, the induction axiom of Peano
arithmetic can be seen as an analogous ‘minimality axiom’; it implies that no model
can be restricted to a proper subset without violating one of the other axioms.
Furthermore, both of these ‘extremal’ axioms lead to categorical, and thus
semantically complete, theories. Based on these observations, Carnap raised the
further guestion of how this phenomenon generalizes, and he again arrived at some
interesting partial results. 5

88 Carnap 2000, 127ff. ‘Nichi-Gabelbarkeit’ means literally ‘non-forkability’, in the sense in which there
can be a fork in a road.

89 Carnap states the theorem in the contrapositive form: being polymorpk {non-monomorph) implies being
gabelbar; Carnap 2000, 133. Note that the result is mentioned in print already in Carnap 1927,

90 Besides Carnap 1927, some brief remarks were published in Carnap 1930z, 1936b.

91 If this were true, Carnap’s proof of the Gabelbarkeitssats would essentially go through; see Lindenbaum
and Tarski 1935, 391, Theorem 10. -

92 These were published later in the 1936 paper ‘Uber Extremelaxiome’, co-written with his student F.
Bachmann; see Carnap and Bachmann 1936, translated as Carnap and Bachmann 1981, Compare
also the report in Bachmann 1936, For two more recent discussions of the corresponding results, see
Fraenkel and Bar-Hillel 1956, 86-%0, and Hintikka 1992.
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5.~ Conclusion

Despite its various shortcomings, Carnap’s logical and metatheoretic work
from the 1920s—building on that of Fraenkel-—remains one of the most
systernatic treatments of higher-order axiomatics and the _reiation between
categoricity, deductive and semantic completeness, and line cqmpletenests,
specifically in the framework of the simple theory of types. ‘Adm;ttedly, this
status is due less to its scope and depth, which is rather limited, than to the
subsequent historical shift away from higher-order logic. Influenced by the
results of Hilbert, Godel and Tarski, much subsequent work has Ffocussed
instead on the model theory of first-order logic.” Fruitful and mmportant as
this has furned out to be, from the perspective established i the present
paper—the original perspective of Dedekind, Peano, Hilbart,_ Hun_tington and
Veblen, among others—it appears that research into formal axiomatics has been
truncated and somewhat disrupted in ifs progress by the ensuing neglect of
higher-order axiomatics. . _

In: the sequel to this paper we will try to remedy this situation _by suggestl_ng
how such investigations might proceed. To do so, we will provide a concise
review of higher-order logic in a form that is both in line With_Carnap’s and
Fraenkel's approach and suitable for our purposes. We then pick up several
of the historical threads that have been identified in the present paper.
Making use of some new mathematical methods and results which were r‘xot
available when these inquiries were dropped, we will be able to prov;d_e
partial answers to some of the questions mentioned towards the ‘end of this
paper. We will also strengthen some earlier results along. lines hardily
foresecable by Fraenkel, Carnap and their contemporaries, but .5‘10t
incompatible with their point of view; and we will indicate some promising
directions for further work. Altogether, it should become evident thz%t the
logical and metatheoretic rtesearch begun by Dedekind, Pea;m, Hilbert,
Huntington and Veblen in the late nineteenth and early'twentleth century,
and developed further in Fraenkel's and Carnap's metaioglce}l work .from the
19205, is not just of historical, but also of continuing logical and
mathematical interest.
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